Computational Fluid Dynamics of Developing Avian Outflow Tract Heart Valves

[1]  Russell A. Gould,et al.  Quantification of embryonic atrioventricular valve biomechanics during morphogenesis. , 2012, Journal of biomechanics.

[2]  Jonathan T Butcher,et al.  Quantitative three‐dimensional imaging of live avian embryonic morphogenesis via micro‐computed tomography , 2011, Developmental dynamics : an official publication of the American Association of Anatomists.

[3]  Ruikang K. Wang,et al.  Quantifying blood flow and wall shear stresses in the outflow tract of chick embryonic hearts. , 2011, Computers & structures.

[4]  Jonathan T Butcher,et al.  Hemodynamic patterning of the avian atrioventricular valve , 2011, Developmental dynamics : an official publication of the American Association of Anatomists.

[5]  Jouha Min,et al.  Quantitative three-dimensional analysis of embryonic chick morphogenesis via microcomputed tomography. , 2011, Anatomical record.

[6]  Nozomi Nishimura,et al.  Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects. , 2010, American journal of physiology. Heart and circulatory physiology.

[7]  Jonathan T Butcher,et al.  An ex-ovo chicken embryo culture system suitable for imaging and microsurgery applications. , 2010, Journal of visualized experiments : JoVE.

[8]  M. Dickinson,et al.  The Effects of Hemodynamic Force on Embryonic Development , 2010, Microcirculation.

[9]  R E Poelmann,et al.  Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart , 2010, Journal of The Royal Society Interface.

[10]  Michael Liebling,et al.  Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart , 2009, PLoS biology.

[11]  A. Galindo,et al.  Conotruncal anomalies in fetal life: accuracy of diagnosis, associated defects and outcome. , 2009, European journal of obstetrics, gynecology, and reproductive biology.

[12]  A F W van der Steen,et al.  Doppler flow velocity waveforms in the embryonic chicken heart at developmental stages corresponding to 5–8 weeks of human gestation , 2009, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[13]  D. Christensen,et al.  Dependence of Aortic Arch Morphogenesis on Intracardiac Blood Flow in the Left Atrial Ligated Chick Embryo , 2009, Anatomical record.

[14]  Kerem Pekkan,et al.  Aortic Arch Morphogenesis and Flow Modeling in the Chick Embryo , 2009, Annals of Biomedical Engineering.

[15]  E. Boulpaep ARTERIES AND VEINS , 2009 .

[16]  G. Shaw,et al.  Chromosomal abnormalities among children born with conotruncal cardiac defects. , 2009, Birth defects research. Part A, Clinical and molecular teratology.

[17]  Giancarlo Pennati,et al.  Use of mathematic modeling to compare and predict hemodynamic effects of the modified Blalock-Taussig and right ventricle-pulmonary artery shunts for hypoplastic left heart syndrome. , 2008, The Journal of thoracic and cardiovascular surgery.

[18]  Kim Van der Heiden,et al.  Fluid Shear Stress and Inner Curvature Remodeling of the Embryonic Heart. Choosing the Right Lane! , 2008, TheScientificWorldJournal.

[19]  David Sedmera,et al.  High‐frequency ultrasonographic imaging of avian cardiovascular development , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[20]  H. Hamada,et al.  Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch , 2007, Nature.

[21]  E. Steegers,et al.  OP18.04: Flow velocity waveforms in the chicken embryonic heart at developmental stages comparable with the first trimester of human pregnancy , 2007 .

[22]  Robert H. Anderson,et al.  Morphologic study of the ascending aorta and aortic arch in hypoplastic left hearts: surgical implications. , 2007, The Journal of thoracic and cardiovascular surgery.

[23]  Sandra Rugonyi,et al.  Finite element modeling of blood flow-induced mechanical forces in the outflow tract of chick embryonic hearts , 2007 .

[24]  D. Srivastava,et al.  Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. , 2007, Circulation.

[25]  David Sedmera,et al.  Increased Ventricular Preload Is Compensated by Myocyte Proliferation in Normal and Hypoplastic Fetal Chick Left Ventricle , 2007, Circulation research.

[26]  Robert E Guldberg,et al.  Quantitative volumetric analysis of cardiac morphogenesis assessed through micro‐computed tomography , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[27]  R. Chaoui,et al.  Changes in pulmonary venous Doppler parameters in fetal cardiac defects , 2006, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[28]  Anna I Hickerson,et al.  The Embryonic Vertebrate Heart Tube Is a Dynamic Suction Pump , 2006, Science.

[29]  C. Gomez-Fifer Hypoplastic left heart syndrome in the fetus: Diagnostic features prior to birth and their impact on postnatal outcome , 2006 .

[30]  J. Glickstein,et al.  Prenatal diagnosis of conotruncal malformations: diagnostic accuracy, outcome, chromosomal abnormalities, and extracardiac anomalies. , 2006, American journal of perinatology.

[31]  M. Buckingham,et al.  Rotation of the Myocardial Wall of the Outflow Tract Is Implicated in the Normal Positioning of the Great Arteries , 2006, Circulation research.

[32]  Jerry Westerweel,et al.  In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. , 2006, Journal of biomechanics.

[33]  D. Birchall,et al.  Analysis of haemodynamic disturbance in the atherosclerotic carotid artery using computational fluid dynamics , 2006, European Radiology.

[34]  C. Wren,et al.  Cardiovascular Malformations Among Preterm Infants , 2005, Pediatrics.

[35]  Martin Baiker,et al.  Changes in Shear Stress–Related Gene Expression After Experimentally Altered Venous Return in the Chicken Embryo , 2005, Circulation research.

[36]  R S Reneman,et al.  Control of arterial branching morphogenesis in embryogenesis: go with the flow. , 2005, Cardiovascular research.

[37]  M E Dickinson,et al.  Measuring hemodynamic changes during mammalian development. , 2004, American journal of physiology. Heart and circulatory physiology.

[38]  L. Taber,et al.  Mechanical Asymmetry in the Embryonic Chick Heart During Looping , 2003, Annals of Biomedical Engineering.

[39]  J. Hoffman,et al.  Incidence of congenital heart disease: II. Prenatal incidence , 1995, Pediatric Cardiology.

[40]  J. Hoffman,et al.  Incidence of congenital heart disease: I. Postnatal incidence , 1995, Pediatric Cardiology.

[41]  J. Hurlé,et al.  Malformations of the semilunar valves produced in chick embryos by mechanical interference with cardiogenesis , 1983, Anatomy and Embryology.

[42]  T. M. Yelbuz,et al.  Myocardial volume and organization are changed by failure of addition of secondary heart field myocardium to the cardiac outflow tract , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[43]  Michiko Watanabe,et al.  Sculpting the cardiac outflow tract. , 2003, Birth defects research. Part C, Embryo today : reviews.

[44]  D. Sahn,et al.  Flow in the Early Embryonic Human Heart , 2003, Pediatric Cardiology.

[45]  M. Kirby,et al.  PERSPECTIVES IN PEDIATRIC PATHOLOGY Molecular Embryogenesis of the Heart , 2002 .

[46]  Nathan D. Lawson,et al.  Arteries and veins: making a difference with zebrafish , 2002, Nature Reviews Genetics.

[47]  J. Hoffman,et al.  The incidence of congenital heart disease. , 2002, Journal of the American College of Cardiology.

[48]  Clifford Matthews,et al.  Basic fluid mechanics , 2002 .

[49]  N A Brown,et al.  Septation and valvar formation in the outflow tract of the embryonic chick heart , 2001, The Anatomical record.

[50]  R. Markwald,et al.  The outflow tract of the heart is recruited from a novel heart-forming field. , 2001, Developmental biology.

[51]  J. Belmont,et al.  Molecular determinants of left and right outflow tract obstruction. , 2000, American journal of medical genetics.

[52]  Deepak Srivastava,et al.  A genetic blueprint for cardiac development , 2000, Nature.

[53]  E. Clark,et al.  Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions , 1999, The Anatomical record.

[54]  R. Markwald,et al.  Living Morphogenesis of the Heart , 1998, Cardiovascular Molecular Morphogenesis.

[55]  Wolfgang Driever,et al.  gridlock, a localized heritable vascular patterning defect in the zebrafish , 1995, Nature Medicine.

[56]  R E Poelmann,et al.  Intracardiac blood flow patterns related to the yolk sac circulation of the chick embryo. , 1995, Circulation research.

[57]  N. Hu,et al.  Hemodynamics of the Stage 12 to Stage 29 Chick Embryo , 1989, Circulation research.

[58]  P. Davies,et al.  Haemodynamic shear stress activates a K+ current in vascular endothelial cells , 1988, Nature.

[59]  E. Clark,et al.  Effect of conotruncal constriction on aortic-mitral valve continuity in the stage 18, 21 and 24 chick embryo. , 1984, The American journal of cardiology.

[60]  R. Arcilla,et al.  Intracardiac Flow Patterns in Early Embryonic Life: A Reexamination , 1983, Circulation research.

[61]  E. Clark,et al.  Developmental Hemodynamic Changes in the Chick Embryo from Stage 18 to 27 , 1982, Circulation research.

[62]  A. Harcus,et al.  Arteries and Veins , 1975 .

[63]  R. Schroter,et al.  Atheroma and arterial wall shear - Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[64]  D. L. Fry Acute Vascular Endothelial Changes Associated with Increased Blood Velocity Gradients , 1968, Circulation research.