Standard and goal-oriented adaptive mesh refinement applied to radiation transport on 2D unstructured triangular meshes

Standard and goal-oriented adaptive mesh refinement (AMR) techniques are presented for the linear Boltzmann transport equation. A posteriori error estimates are employed to drive the AMR process and are based on angular-moment information rather than on directional information, leading to direction-independent adapted meshes. An error estimate based on a two-mesh approach and a jump-based error indicator are compared for various test problems. In addition to the standard AMR approach, where the global error in the solution is diminished, a goal-oriented AMR procedure is devised and aims at reducing the error in user-specified quantities of interest. The quantities of interest are functionals of the solution and may include, for instance, point-wise flux values or average reaction rates in a subdomain. A high-order (up to order 4) Discontinuous Galerkin technique with standard upwinding is employed for the spatial discretization; the discrete ordinates method is used to treat the angular variable.

[1]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[2]  Frédéric Alauzet,et al.  Anisotropic metrics for mesh adaptation , 2003 .

[3]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[4]  Juhani Pitkäranta,et al.  CONVERGENCE OF A FULLY DISCRETE SCHEME FOR TWO-DIMENSIONAL NEUTRON TRANSPORT* , 1983 .

[5]  Harold A. Buetow,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[6]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[7]  P. Colella,et al.  An Adaptive Mesh Refinement Algorithm for the Radiative Transport Equation , 1998 .

[8]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[9]  Elmer E Lewis,et al.  Spatial Adaptivity Applied to the Variational Nodal Pn Equations , 2002 .

[10]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[11]  Anthony T. Patera,et al.  Bounds for Linear–Functional Outputs of Coercive Partial Differential Equations : Local Indicators and Adaptive Refinement , 1998 .

[12]  Wolfgang Bangerth,et al.  Goal-Oriented h-Adaptivity for the Multigroup SPN Equations , 2010 .

[13]  Ralf Hartmann Adaptive Finite Element Methods for the Compressible Euler Equations , 2002 .

[14]  E. Ramm,et al.  Error-controlled Adaptive Finite Elements in Solid Mechanics , 2001 .

[15]  Ludmil Zikatanov,et al.  A posteriori error estimator and AMR for discrete ordinates nodal transport methods , 2009 .

[16]  Jim E. Morel,et al.  An Sn Spatial Discretization Scheme for Tetrahedral Meshes , 2005 .

[17]  Yaqi Wang Adaptive mesh refinement solution techniques for the multigroup SN transport equation using a higher-order discontinuous finite element method , 2010 .

[18]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[19]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[20]  Ralf Hartmann,et al.  Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..

[21]  K. D. Lathrop Spatial differencing of the transport equation: Positivity vs. accuracy , 1969 .

[22]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[23]  P. Solín Partial differential equations and the finite element method , 2005 .

[24]  Guido Kanschat,et al.  A posteriori error control in radiative transfer , 2007, Computing.

[25]  P. Colella,et al.  A CONSERVATIVE ADAPTIVE-MESH ALGORITHM FOR UNSTEADY, COMBINED-MODE HEAT TRANSFER USING THE DISCRETE ORDINATES METHOD , 1999 .

[26]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[27]  Wolfgang Bangerth,et al.  Three-dimensional h-adaptivity for the multigroup neutron diffusion equations , 2009 .

[28]  Edward W. Larsen,et al.  Fast iterative methods for discrete-ordinates particle transport calculations , 2002 .

[29]  Christian Aussourd,et al.  Styx: A Multidimensional AMR SN Scheme , 2003 .

[30]  PAUL HOUSTON,et al.  Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..

[31]  C. J. Werner,et al.  Neutron capture and transmission measurements and resonance parameter analysis of niobium , 2002 .

[32]  Leszek Demkowicz,et al.  Goal-oriented hp-adaptivity for elliptic problems , 2004 .

[33]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[34]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[35]  Jean C. Ragusa,et al.  Application of hp Adaptivity to the Multigroup Diffusion Equations , 2009 .

[36]  Elmer E Lewis,et al.  An Adaptive Approach to Variational Nodal Diffusion Problems , 2001 .

[37]  A. Dedner,et al.  An Adaptive Higher Order Method for Solving the Radiation Transport Equation on Unstructured Grids , 2002 .

[38]  Pavel Šolín Partial Differential Equations and the Finite Element Method: Šolín/Method , 2005 .

[39]  R. Baker A Block Adaptive Mesh Refinement Algorithm for the Neutral Particle Transport Equation , 2002 .

[40]  Jean C. Ragusa,et al.  A simple Hessian-based 3D mesh adaptation technique with applications to the multigroup diffusion equations , 2008 .

[41]  R. M. Shagaliev,et al.  Different Algorithms of 2D Transport Equation Parallelization on Random Non-Orthogonal Grids , 2006 .

[42]  Y. Y. Azmy Arbitrarily high order characteristic methods for solving the neutron transport equation , 1992 .

[43]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[44]  Guido Kanschat,et al.  Radiative transfer with finite elements. I. Basic method and tests , 2001 .

[45]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[46]  Francisco Ogando,et al.  Development of a radiation transport fluid dynamic code under AMR scheme , 2001 .

[47]  Axel Klar,et al.  Adaptive solutions of SPN-approximations to radiative heat transfer in glass☆ , 2005 .

[48]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[49]  Jean C. Ragusa,et al.  Diffusion Synthetic Acceleration for High-Order Discontinuous Finite Element SN Transport Schemes and Application to Locally Refined Unstructured Meshes , 2010 .

[50]  Jean C. Ragusa,et al.  A high-order discontinuous Galerkin method for the SN transport equations on 2D unstructured triangular meshes , 2009 .

[51]  Jean C. Ragusa,et al.  On the Convergence of DGFEM Applied to the Discrete Ordinates Transport Equation for Structured and Unstructured Triangular Meshes , 2009 .

[52]  V. Gregory Weirs,et al.  Adaptive mesh refinement theory and applications : proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods, Sept. 3-5, 2003 , 2005 .