Capacity of a simple intercellular signal transduction channel

We model the ligand-receptor molecular communication channel with a discrete-time Markov model, and show how to obtain the capacity of this channel. We show that the capacity-achieving input distribution is iid; further, unusually for a channel with memory, we show that feedback does not increase the capacity of this channel.

[1]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[2]  Mohsen Sardari,et al.  Relaying in diffusion-based molecular communication , 2013, 2013 IEEE International Symposium on Information Theory.

[3]  Toby Berger,et al.  Rate distortion theory : a mathematical basis for data compression , 1971 .

[4]  Haim H. Permuter,et al.  Capacity and Zero-Error Capacity of the Chemical Channel with Feedback , 2007, 2007 IEEE International Symposium on Information Theory.

[5]  Robert G. Endres,et al.  Noise characteristics of the Escherichia coli rotary motor , 2011, BMC Systems Biology.

[6]  Peter N. Devreotes,et al.  G protein-linked signaling pathways control the developmental program of dictyostelium , 1994, Neuron.

[7]  Toby Berger,et al.  The capacity of finite-State Markov Channels With feedback , 2005, IEEE Transactions on Information Theory.

[8]  Peter J Thomas Every Bit Counts , 2011, Science.

[9]  Mohsen Sardari,et al.  Capacity of diffusion-based molecular communication with ligand receptors , 2011, 2011 IEEE Information Theory Workshop.

[10]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[11]  M. Ueda,et al.  Stochastic signal processing and transduction in chemotactic response of eukaryotic cells. , 2007, Biophysical journal.

[12]  T. Sejnowski,et al.  Calmodulin Activation by Calcium Transients in the Postsynaptic Density of Dendritic Spines , 2008, PloS one.

[13]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[14]  Urbashi Mitra,et al.  Capacity of Electron-Based Communication Over Bacterial Cables: The Full-CSI Case , 2015, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

[15]  R. Davies,et al.  Bacterial-induced release of inflammatory mediators by bronchial epithelial cells. , 1996, The European respiratory journal.

[16]  Alan G. Hawkes,et al.  The Principles of the Stochastic Interpretation of Ion-Channel Mechanisms , 1983 .

[17]  Ian F. Akyildiz,et al.  Molecular communication options for long range nanonetworks , 2009, Comput. Networks.

[18]  P. Devreotes,et al.  A chemoattractant receptor controls development in Dictyostelium discoideum. , 1988, Science.

[19]  P. Devreotes,et al.  Moving in the right direction: how eukaryotic cells migrate along chemical gradients. , 2011, Seminars in cell & developmental biology.

[20]  Haim H. Permuter,et al.  Capacity of the Trapdoor Channel With Feedback , 2006, IEEE Transactions on Information Theory.

[21]  T. Yanagida,et al.  Single-Molecule Analysis of Chemotactic Signaling in Dictyostelium Cells , 2001, Science.

[22]  Urbashi Mitra,et al.  A Stochastic Model for Electron Transfer in Bacterial Cables , 2014, IEEE Journal on Selected Areas in Communications.

[23]  Hui Li,et al.  Capacity of the Memoryless Additive Inverse Gaussian Noise Channel , 2014, IEEE Journal on Selected Areas in Communications.

[24]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[25]  Wouter-Jan Rappel,et al.  Quantifying Information Transmission in Eukaryotic Gradient Sensing and Chemotactic Response , 2011, Journal of statistical physics.

[26]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[27]  D. Blackwell,et al.  Proof of Shannon's Transmission Theorem for Finite-State Indecomposable Channels , 1958 .

[28]  Israel Bar-David,et al.  Capacity and coding for the Gilbert-Elliot channels , 1989, IEEE Trans. Inf. Theory.

[29]  Todd P. Coleman,et al.  Estimating the directed information to infer causal relationships in ensemble neural spike train recordings , 2010, Journal of Computational Neuroscience.

[30]  S. Verdú Poisson Communication Theory , 2004 .

[31]  Walter Fontana,et al.  Genetic networks. Small numbers of big molecules. , 2002, Science.

[32]  Desmond J. Higham,et al.  Modeling and Simulating Chemical Reactions , 2008, SIAM Rev..

[33]  Andrew W. Eckford,et al.  Nanoscale Communication with Brownian Motion , 2007, 2007 41st Annual Conference on Information Sciences and Systems.

[34]  R. Kessin Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity , 2001 .

[35]  Mohsen Sardari,et al.  Collective sensing-capacity of bacteria populations , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[36]  I. Nemenman,et al.  Information Transduction Capacity of Noisy Biochemical Signaling Networks , 2011, Science.

[37]  Massimiliano Pierobon,et al.  A physical end-to-end model for molecular communication in nanonetworks , 2010, IEEE Journal on Selected Areas in Communications.

[38]  Aaron D. Wyner,et al.  Capacity and error-exponent for the direct detection photon channel-Part II , 1988, IEEE Trans. Inf. Theory.

[39]  Richard M. Salter,et al.  An Information Theoretic Framework for Eukaryotic Gradient Sensing , 2006, NIPS.

[40]  P. Brémaud Point Processes and Queues , 1981 .

[41]  Mark H. A. Davis,et al.  Capacity and cutoff rate for Poisson-type channels , 1980, IEEE Trans. Inf. Theory.

[42]  Todd P. Coleman,et al.  Directed Information Graphs , 2012, IEEE Transactions on Information Theory.

[43]  T. Hunter,et al.  Protein-tyrosine kinases. , 1985, Annual review of biochemistry.

[44]  Mohsen Sardari,et al.  Capacity of discrete molecular diffusion channels , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[45]  J. Massey CAUSALITY, FEEDBACK AND DIRECTED INFORMATION , 1990 .

[46]  Hillel J Chiel,et al.  Pursuit of food versus pursuit of information in a Markovian perception-action loop model of foraging. , 2012, Journal of theoretical biology.

[47]  H. Berg,et al.  Physics of chemoreception. , 1977, Biophysical journal.

[48]  J. R. Pierce,et al.  Symposium on Information Theory in Biology , 1959 .

[49]  Peter J. Thomas,et al.  The Diffusion-Limited Biochemical Signal-Relay Channel , 2003, NIPS.

[50]  K. Kullander,et al.  Mechanisms and functions of eph and ephrin signalling , 2002, Nature Reviews Molecular Cell Biology.

[51]  Toshio Yanagida,et al.  Single Molecule Analysis of Chemotactic Signaling in Dictyostelium Cells , 2001 .

[52]  Pravin Varaiya,et al.  Capacity, mutual information, and coding for finite-state Markov channels , 1996, IEEE Trans. Inf. Theory.

[53]  Wouter-Jan Rappel,et al.  Establishing direction during chemotaxis in eukaryotic cells. , 2002, Biophysical journal.

[54]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[55]  Christopher Rose,et al.  Wireless signaling with identical quanta , 2012, 2012 IEEE Wireless Communications and Networking Conference (WCNC).

[56]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[57]  Richard T. Jaspers,et al.  Ca 2 + / calmodulin-dependent protein kinase II affects contractile , but not fatigue-related phenotype in rat skeletal muscle , 2013 .

[58]  A. D. Wyner,et al.  Capacity and error exponent for the direct detection photon channel. II , 1988 .

[59]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[60]  Toby Berger,et al.  Capacity and zero-error capacity of Ising channels , 1990, IEEE Trans. Inf. Theory.

[61]  Gerhard Kramer Capacity results for the discrete memoryless network , 2003, IEEE Trans. Inf. Theory.

[62]  K. Deisseroth,et al.  Optogenetics , 2013, Proceedings of the National Academy of Sciences.

[63]  D. Robbins,et al.  The Hedgehog Signal Transduction Network , 2012, Science Signaling.

[64]  Pablo A Iglesias,et al.  Navigating through models of chemotaxis. , 2008, Current opinion in cell biology.

[65]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[66]  David F. Anderson,et al.  Continuous Time Markov Chain Models for Chemical Reaction Networks , 2011 .

[67]  Peter J Thomas,et al.  Measuring Edge Importance: A Quantitative Analysis of the Stochastic Shielding Approximation for Random Processes on Graphs , 2013, Journal of mathematical neuroscience.

[68]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[69]  Toby Berger,et al.  Characterizing optimum (input, output) processes for finite-state channels with feedback , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[70]  Stefan Mihalas,et al.  Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums , 2006, Proceedings of the National Academy of Sciences.

[71]  Geoffrey J. Goodhill,et al.  A Theoretical Model of Axon Guidance by the Robo Code , 2003, Neural Computation.

[72]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[73]  R. Cheong,et al.  How Information Theory Handles Cell Signaling and Uncertainty , 2012, Science.

[74]  J. Adler,et al.  Protein methylation in behavioural control mechanisms and in signal transduction , 1979, Nature.

[75]  I. Nemenman,et al.  Cellular noise and information transmission. , 2014, Current opinion in biotechnology.

[76]  G. Kramer,et al.  Capacity results for the discrete memoryless network , 1999, Proceedings of the 1999 IEEE Information Theory and Communications Workshop (Cat. No. 99EX253).

[77]  W. Fontana,et al.  Small Numbers of Big Molecules , 2002, Science.

[78]  J. W.,et al.  Studies in Chemical Dynamics , 1896, Nature.

[79]  K. Yau,et al.  Phototransduction mechanism in retinal rods and cones. The Friedenwald Lecture. , 1994, Investigative ophthalmology & visual science.

[80]  P. Jonas,et al.  AMPA-type glutamate receptors--nonselective cation channels mediating fast excitatory transmission in the CNS. , 1993, EXS.

[81]  Patrick Degenaar,et al.  A stochastic model of the single photon response in Drosophila photoreceptors. , 2010, Integrative biology : quantitative biosciences from nano to macro.

[82]  Tatsuya Suda,et al.  Molecular communication through gap junction channels: System design, experiments and modeling , 2007, 2007 2nd Bio-Inspired Models of Network, Information and Computing Systems.

[83]  Özgür B. Akan,et al.  An information theoretical approach for molecular communication , 2007, 2007 2nd Bio-Inspired Models of Network, Information and Computing Systems.

[84]  W. L. Root,et al.  Modern mathematics for the engineer , 1964 .

[85]  Rajesh Sundaresan,et al.  Capacity of queues via point-process channels , 2006, IEEE Transactions on Information Theory.

[86]  Nancy R Gough,et al.  Focus Issue: Signaling Across Membranes , 2005, Science's STKE.

[87]  Haim H. Permuter,et al.  To Feed or Not to Feedback , 2014, IEEE Transactions on Information Theory.

[88]  Ernst Cohen,et al.  Studies In Chemical Dynamics , 1896 .

[89]  Y. Kabanov The Capacity of a Channel of the Poisson Type , 1978 .

[90]  Michael R. Frey Information capacity of the Poisson channel , 1991, IEEE Trans. Inf. Theory.

[91]  Gianluca Setti,et al.  Design and Analysis of Biomolecular Circuits , 2011 .

[92]  Bard Ermentrout,et al.  Stochastic representations of ion channel kinetics and exact stochastic simulation of neuronal dynamics , 2014, Journal of Computational Neuroscience.

[93]  Wouter-Jan Rappel,et al.  Quantifying noise levels of intercellular signals. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  W. Rappel,et al.  External and internal constraints on eukaryotic chemotaxis , 2010, Proceedings of the National Academy of Sciences.

[95]  Andrew W. Eckford,et al.  Tabletop Molecular Communication: Text Messages through Chemical Signals , 2013, PloS one.

[96]  P. Waage,et al.  Ueber die chemische Affinität. § 1. Einleitung , 1879 .

[97]  Moritz Helias,et al.  Nonequilibrium dynamics of stochastic point processes with refractoriness. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  M. Kennedy,et al.  Signal-processing machines at the postsynaptic density. , 2000, Science.

[99]  Benjamin Lindner,et al.  Integrate-and-fire neurons driven by asymmetric dichotomous noise , 2014, Biological Cybernetics.

[100]  Haim H. Permuter,et al.  Capacity of a POST Channel With and Without Feedback , 2014, IEEE Transactions on Information Theory.