Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion

Quantitative imaging of the elastic properties of the subsurface at depth is essential for civil engineering applications and oil- and gas-reservoir characterization. A realistic synthetic example provides for an assessment of the potential and limits of 2D elastic full-waveform inversionFWIof wide-aperture seismic data for recovering high-resolution P- and S-wave velocity models of complex onshore structures. FWI of land data is challengingbecauseoftheincreasednonlinearityintroducedbyfreesurface effects such as the propagation of surface waves in the heterogeneous near-surface. Moreover, the short wavelengths of the shear wavefield require an accurate S-wave velocity starting modeliflowfrequenciesareunavailableinthedata.Weevaluated different multiscale strategies with the aim of mitigating the nonlinearities. Massively parallel full-waveform inversion was implemented in the frequency domain. The numerical optimization relies on a limited-memory quasi-Newton algorithm that outperforms the more classic preconditioned conjugate-gradient algorithm. The forward problem is based upon a discontinuous Galerkin DG method on triangular mesh, which allows accuratemodelingoffree-surfaceeffects.Sequentialinversionsofincreasingfrequenciesdefinethemostnaturallevelofhierarchyin multiscale imaging. In the case of land data involving surface waves, the regularization introduced by hierarchical frequency inversions is not enough for adequate convergence of the inversion. A second level of hierarchy implemented with complexvalued frequencies is necessary and provides convergence of the inversion toward acceptable P- and S-wave velocity models. Amongthepossiblestrategiesforsamplingfrequenciesintheinversion, successive inversions of slightly overlapping frequency groups is the most reliable when compared to the more standard sequential inversion of single frequencies. This suggests that simultaneous inversion of multiple frequencies is critical when consideringcomplexwavephenomena.

[1]  Arno Jewett,et al.  A Critical Review of , 1964 .

[2]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[3]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[4]  N. Bleistein Two-and-One-Half Dimensional In-Plane Wave Propagation. , 1984 .

[5]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[6]  A. Tarantola A strategy for nonlinear elastic inversion of seismic reflection data , 1986 .

[7]  Gregory Beylkin,et al.  A new slant on seismic imaging: Migration and integral geometry , 1987 .

[8]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[9]  P. Mora Nonlinear two-dimensional elastic inversion of multioffset seismic data , 1987 .

[10]  M. Toksöz,et al.  Diffraction tomography and multisource holography applied to seismic imaging , 1987 .

[11]  P. Mora Elastic wave‐field inversion of reflection and transmission data , 1988 .

[12]  José M. Carcione,et al.  WAVE-PROPAGATION SIMULATION IN AN ELASTIC ANISOTROPIC (TRANSVERSELY ISOTROPIC) SOLID , 1988 .

[13]  R. Pratt,et al.  INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .

[14]  Mark Noble,et al.  Robust elastic nonlinear waveform inversion: Application to real data , 1990 .

[15]  B. Kennett,et al.  AN ALTERNATIVE STRATEGY FOR NON‐LINEAR INVERSION OF SEISMIC WAVEFORMS1 , 1991 .

[16]  Mark Noble,et al.  Nonlinear elastic waveform inversion of land seismic reflection data , 1992 .

[17]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[18]  R. Pratt,et al.  Short Note A critical review of acoustic wave modeling procedures in 2.5 dimensions , 1995 .

[19]  C. Bunks,et al.  Multiscale seismic waveform inversion , 1995 .

[20]  L. Gilles,et al.  Parameterization study for acoustic and elastic ray+Born inversion , 1997 .

[21]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[22]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[23]  R. Shipp,et al.  Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data , 1999 .

[24]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[25]  Side Jin,et al.  Shear‐wave velocity and density estimation from PS-wave AVO analysis: Application to an OBS dataset from the North Sea , 2000 .

[26]  C. Shin,et al.  Improved amplitude preservation for prestack depth migration by inverse scattering theory , 2001 .

[27]  R. Pratt,et al.  Reflection waveform inversion using local descent methods: Estimating attenuation and velocity over a gas-sand deposit , 2001 .

[28]  Seungwon Ko,et al.  Traveltime and amplitude calculations using the damped wave solution , 2002 .

[29]  R. Shipp,et al.  Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data , 2002 .

[30]  A. Buland,et al.  Bayesian linearized AVO inversion , 2003 .

[31]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[32]  Jean Virieux,et al.  Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt , 2004 .

[33]  R. Plessix A review of the adjoint-state method for computing the gradient of a functional with geophysical applications , 2006 .

[34]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — II. The three-dimensional isotropic case , 2006 .

[35]  Fuchun Gao,et al.  Waveform tomography at a groundwater contamination site: VSP-surface data set , 2006 .

[36]  J. Sheng,et al.  Early arrival waveform tomography on near-surface refraction data , 2006 .

[37]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms , 2006 .

[38]  Gary Martin,et al.  Marmousi2 An elastic upgrade for Marmousi , 2006 .

[39]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[40]  John Etgen,et al.  3D Full Waveform Inversion: Wide Versus Narrow Azimuth Acquisitions , 2007 .

[41]  R. G. Pratt,et al.  Efficient waveform tomography for lithospheric imaging: implications for realistic, two-dimensional acquisition geometries and low-frequency data , 2007 .

[42]  R. G. Pratt,et al.  Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model , 2007 .

[43]  Florian Bleibinhaus,et al.  Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging , 2007 .

[44]  Jean Virieux,et al.  Two-dimensional elastic full waveform inversion using Born and Rytov formulations in the frequency domain , 2007 .

[45]  Wenzhi Zhao,et al.  Nonlinear process control of wave-equation inversion and its application in the detection of gas , 2007 .

[46]  Xiaoye S. Li,et al.  Frequency response modelling of seismic waves using finite difference time domain with phase sensitive detection (TD–PSD) , 2007 .

[47]  Denes Vigh,et al.  3D prestack plane-wave, full-waveform inversion , 2008 .

[48]  Mike Warner,et al.  3D Wavefield Tomography: Synthetic And Field Data Examples , 2008 .

[49]  Wim A. Mulder,et al.  Exploring some issues in acoustic full waveform inversion , 2008 .

[50]  3D elastic full waveform inversion in the Laplace domain , 2008 .

[51]  C. Shin,et al.  Two‐dimensional waveform inversion of multi‐component data in acoustic‐elastic coupled media , 2008 .

[52]  T. Sears,et al.  Elastic full waveform inversion of multi‐component OBC seismic data , 2008 .

[53]  C. Shin,et al.  Waveform inversion in the Laplace domain , 2008 .

[54]  Changsoo Shin,et al.  Frequency-Domain Elastic Full Waveform Inversion Using the New Pseudo-Hessian Matrix: Experience of Elastic Marmousi-2 Synthetic Data , 2008 .

[55]  Jean Virieux,et al.  Velocity model building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data , 2008 .

[56]  Romain Brossier,et al.  Parsimonious finite-volume frequency-domain method for 2-D P–SV-wave modelling , 2008 .

[57]  Jean-Yves L'Excellent,et al.  FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data - Part 2: Numerical examples and scalability analysis , 2009, Computational Geosciences.