Low-$p_T$ direct-photon production in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=39$ and 62.4 GeV

The measurement of direct photons from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=39$ and 62.4 GeV in the transverse-momentum range $0.4<p_T<3$ Gev/$c$ is presented by the PHENIX collaboration at the Relativistic Heavy Ion Collider. A significant direct-photon yield is observed in both collision systems. A universal scaling is observed when the direct-photon $p_T$ spectra for different center-of-mass energies and for different centrality selections at $\sqrt{s_{_{NN}}}=62.4$ GeV is scaled with $(dN_{\rm ch}/d\eta)^{\alpha}$ for $\alpha=1.21{\pm}0.04$. This scaling also holds true for direct-photon spectra from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV measured earlier by PHENIX, as well as the spectra from Pb$+$Pb at $\sqrt{s_{_{NN}}}=2760$ GeV published by ALICE. The scaling power $\alpha$ seems to be independent of $p_T$, center of mass energy, and collision centrality. The spectra from different collision energies have a similar shape up to $p_T$ of 2 GeV/$c$. The spectra have a local inverse slope $T_{\rm eff}$ increasing with $p_T$ of $0.174\pm0.018$ GeV/$c$ in the range $0.4<p_T<1.3$ GeV/$c$ and increasing to $0.289\pm0.024$ GeV/$c$ for $0.9<p_T<2.1$ GeV/$c$. The observed similarity of low-$p_T$ direct-photon production from $\sqrt{s_{_{NN}}}= 39$ to 2760 GeV suggests a common source of direct photons for the different collision energies and event centrality selections, and suggests a comparable space-time evolution of direct-photon emission.

Jr. | D. K. Mishra | K. O. Eyser | A. Sukhanov | R. Hollis | A. Mignerey | R. Nouicer | R. Pak | M. Patel | C. Vale | J. Hanks | A. Ster | A. Angerami | Z. Citron | M. Donadelli | N. Grau | S. Kaneti | M. Leite | A. Milov | V. Vrba | S. White | T. Ichihara | J. Ying | C. Woody | S. Stoll | D. Isenhower | D. Perepelitsa | M. Proissl | Y. Yamaguchi | V. Khachatryan | R. Choudhury | G. Kunde | M. Issah | J. Velkovska | S. Greene | T. Fusayasu | H. Moon | Y. Ikeda | A. Veicht | R. Soltz | Y. Tanaka | C. Ogilvie | J. Peng | D. Kotchetkov | M. Shimomura | K. Tanida | A. Vossen | A. Mohanty | O. Chvála | J. Haggerty | J. Frantz | V. Papavassiliou | D. Mcglinchey | R. Hayano | K. Read | J. Kamin | A. Khatiwada | J. Sun | C. Aidala | C. Dean | J. Durham | F. Fleuret | A. Sickles | O. Drapier | J. Imrek | A. Iordanova | M. Finger | M. Potekhin | J. Nagle | J. Sziklai | Y. Efremenko | N. Apadula | Y. Berdnikov | D. Blau | H. Buesching | T. Chujo | H. Hamagaki | B. Jacak | A. Kazantsev | A. Khanzadeev | F. Krizek | V. Manko | C. Nattrass | N. Novitzky | A. Nyanin | H. Pei | J. Rak | V. Riabov | D. Silvermyr | S. Sorensen | A. Enokizono | A. Glenn | H. Torii | H. Pereira | M. Mondal | T. Moukhanova | R. Akimoto | T. Awes | D. Peressounko | I. Yushmanov | D. Kim | Y. Hori | T. Horaguchi | A. Adare | I. Garishvili | T. Kim | R. Belmont | M. Connors | M. Vargyas | D. Watanabe | V. C. Roman | P. Stankus | W. Zajc | E. Aschenauer | K. Barish | M. Csan'ad | M. Daugherity | R. Esha | D. Kincses | H. Sako | R. Seto | A. Taranenko | S. Choi | M. Gonin | H. Themann | W. Sondheim | P. Shukla | J. Osborn | S. Taneja | Z. You | J. Alexander | A. Frawley | O. Dietzsch | E. M. Takagui | A. Taketani | M. Leitgab | Y. Miyachi | R. Seidl | T. Hachiya | V. Pantuev | A. Berdnikov | A. Drees | A. Franz | N. Saito | T. CsorgHo | C. Chi | S. Bathe | L. Guo | K. Drees | A. Durum | A. Yanovich | K. Karatsu | I. Park | K. Kurita | S. Nagamiya | E. Atomssa | I. Shein | T. Sakaguchi | M. Harvey | A. Bazilevsky | S. Pate | B. Kim | C. Chen | N. Ajitanand | Y. Akiba | K. Aoki | H. Asano | B. Azmoun | V. Babintsev | M. Bai | B. Bannier | B. Bassalleck | V. Baublis | S. Baumgart | J. Bok | K. Boyle | M. Brooks | V. Bumazhnov | S. Butsyk | S. Campbell | I. Choi | P. Christiansen | V. Cianciolo | L. D'Orazio | S. Dairaku | A. Datta | G. David | A. Denisov | E. Desmond | L. Ding | A. Dion | T. Engelmore | B. Fadem | D. Fields | Y. Fukao | K. Gainey | C. Gal | A. Garishvili | X. Gong | M. Perdekamp | K. Hahn | S. Hasegawa | K. Hashimoto | X. He | T. Hemmick | T. Hester | J. Huang | K. Joo | D. Jouan | D. Jumper | B. H. Kang | D. Kawall | K. Kijima | E. Kim | K. Kim | Y. Kim | 'A. Kiss | E. Kistenev | J. Klatsky | D. Kleinjan | P. Kline | Y. Komatsu | B. Komkov | J. Koster | D. Kotov | M. Kurosawa | Y. Lai | J. Lajoie | A. Lebedev | K. Lee | M. Leitch | B. Lewis | M. Liu | B. Love | Y. Makdisi | M. Makek | A. Manion | E. Mannel | S. Masumoto | M. McCumber | P. McGaughey | C. McKinney | M. Mendoza | B. Meredith | T. Mibe | S. Miyasaka | T. Moon | D. Morrison | S. Motschwiller | T. Murakami | J. Murata | A. Mwai | I. Nakagawa | Y. Nakamiya | K. Nakano | A. Nederlof | M. Nihashi | K. Okada | A. Oskarsson | L. Patel | R. Petti | C. Pinkenburg | R. Pisani | H. Qu | D. Reynolds | Y. Riabov | E. Richardson | D. Roach | S. Rolnick | M. Rosati | B. Sahlmueller | V. Samsonov | M. Sarsour | S. Sawada | K. Sedgwick | A. Sen | T. Shibata | K. Shoji | C. P. Singh | V. Singh | I. Sourikova | E. Stenlund | M. Stepanov | M. Tannenbaum | S. Tarafdar | E. Tennant | T. Todoroki | R. Towell | I. Tserruya | H. W. Hecke | E. Vazquez-Zambrano | M. Virius | E. Vznuzdaev | X. Wang | Y. Watanabe | F. Wei | R. Wei | D. Winter | S. Wolin | M. Wysocki | B. Xia | R. Yang | S. Yokkaichi | I. Younus | A. Zelenski | L. Zou | M. Alfred | Y. Aramaki | Y. Goto | K. Homma | B. Hong | D. Ivanishchev | E. O'brien | K. Ozawa | D. Sharma | K. Shigaki | M. Slunevcka | M. Tom'avsek | M. Chiu | K. V. Dharmawardane | S. Edwards | H. Gustafsson | E. Haslum | H. Iinuma | J. Kapustinsky | M. Kasai | T. Kempel | E. Kinney | A. Kr'al | G. Kyle | D. Lee | L. A. Levy | M. Ouchida | G. Roche | L. Tom'avsek | Y. Tsuchimoto | R. Corliss | U. Acharya | W. Fan | S. Fokin | T. Gunji | J. Hill | A. Hodges | M. Inaba | Z. Ji | B. Johnson | N. Lewis | T. Majoros | Y. Miake | I. Mitrankov | B. Mulilo | M. Nagy | S. Nelson | W. Peng | C. PerezLara | A. Pun | M. Purschke | P. Radzevich | I. Ravinovich | D. Richford | J. Runchey | B. Singh | T. Sugitate | A. Takahara | Y. Ueda | B. Ujvari | K. S. Sim | H. Al-Ta’ani | P. Castera | S. Lee | S. Mohapatra | S. Lokos | C. Wong | A. Deshpande | Y. Morales | M. Javani | L. Bichon | B. Blankenship | V. Borisov | D. Fitzgerald | M. Giles | X. Jiang | A. Kingan | L. Kovács | Y. Kwon | D. Larionova | S. H. Lee | S. H. Lim | X. Li | D. A. Loomis | J. T. Mitchell | M. Mitrankova | G. Nukazuka | S. Park | N. Ramasubramanian | S. Sato | C. L. Silva | K. Smith | Z. Sun | V. Doomra | C. Maguire | K. Watanabe | S. Park | K. S. Lee | Y. K. Kim | B. Cole | B. Lee | T. Nagae | B. Park | M. Sano | T. Tsuji | H. Kim | R. V'ertesi | J. Choi | R. D. G. Cassagnac | J. Kang | J. S. Kang | T. Nakamura | J. Lee | K. Nakamura | C. Kim

[1]  A. Drees,et al.  Examination of the universal behavior of the η -to- π0 ratio in heavy-ion collisions , 2021, Physical Review C.

[2]  K. O. Eyser,et al.  M ay 2 01 2 Direct-Photon Production in p + p Collisions at √ s = 200 GeV at Midrapidity , 2021 .

[3]  J. Paquet,et al.  Probing Early-Time Dynamics and Quark-Gluon Plasma Transport Properties with Photons and Hadrons , 2020, 2002.05191.

[4]  G. David Direct real photons in relativistic heavy ion collisions , 2019, Reports on progress in physics. Physical Society.

[5]  A. Drees PHENIX Measurements of Beam EnergyDependence of Direct Photon Emission , 2019, Proceedings of International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions — PoS(HardProbes2018).

[6]  V. Khachatryan PHENIX measurements of low momentum direct photon radiation , 2018, Nuclear Physics A.

[7]  M. K. Lee,et al.  Beam Energy and Centrality Dependence of Direct-Photon Emission from Ultrarelativistic Heavy-Ion Collisions. , 2019, Physical review letters.

[8]  W. Fan Low Momentum Direct Photon Measurement , 2018 .

[9]  N. Novitzky,et al.  Photons from thermalizing matter in heavy ion collisions , 2018, Nuclear Physics A.

[10]  G. S. Averichev,et al.  Direct virtual photon production in Au+Au collisions at sNN=200 GeV , 2017 .

[11]  K. Reygers,et al.  Parametric estimate of the relative photon yields from the glasma and the quark-gluon plasma in heavy-ion collisions , 2017, 1701.05064.

[12]  I. Zahed,et al.  Direct photon elliptic flow at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider , 2016, 1610.06213.

[13]  A. Ayala,et al.  Magnetic catalysis of a finite-size pion condensate , 2016, 1609.02595.

[14]  Jr.,et al.  Azimuthally anisotropic emission of low-momentum direct photons in Au + Au collisions at sNN =200 GeV , 2015, 1509.07758.

[15]  S. Jeon,et al.  Production of photons in relativistic heavy-ion collisions , 2015, 1509.06738.

[16]  M. K. Lee,et al.  Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\sqrt{s_{NN}}=7.7$ to 200 GeV , 2015, 1509.06727.

[17]  S. Jeon,et al.  Thermal Photon Radiation in High Multiplicity p+Pb Collisions at the Large Hadron Collider. , 2015, Physical review letters.

[18]  L. Mclerran,et al.  A tale of tails: Photon rates and flow in ultra-relativistic heavy ion collisions , 2015, 1504.07223.

[19]  W. Cassing,et al.  Effective QCD and transport description of dilepton and photon production in heavy-ion collisions and elementary processes , 2015, 1512.08126.

[20]  W. Cassing,et al.  Hadronic and partonic sources of direct photons in relativistic heavy-ion collisions , 2015, 1504.05699.

[21]  Matthew Heffernan,et al.  Universal parametrization of thermal photon rates in hadronic matter , 2014, 1411.7012.

[22]  M. He,et al.  Pseudo-critical enhancement of thermal photons in relativistic heavy-ion collisions? , 2014, 1404.2846.

[23]  K. Gulbrandsen,et al.  Charged-particle multiplicities in proton–proton collisions at √ s = 0 . 9 to 8 TeV , 2015 .

[24]  E. Bratkovskaya Phenomenology of photon and dilepton production in relativistic nuclear collisions , 2014, 1408.3674.

[25]  Jr.,et al.  Centrality dependence of low-momentum direct-photon production in Au+Au collisions at sNN=200 GeV , 2014, 1405.3940.

[26]  L. Mclerran,et al.  The Glasma, photons and the implications of anisotropy , 2014, 1403.7462.

[27]  A. Monnai Thermal photon v 2 with slow quark chemical equilibration , 2014, 1403.4225.

[28]  I. Zahed,et al.  Electromagnetic Radiation in Hot QCD Matter: Rates, Electric Conductivity, Flavor Susceptibility and Diffusion , 2014, 1403.1632.

[29]  L. Mclerran,et al.  Geometrical scaling of direct-photon production in hadron collisions from RHIC to the LHC , 2014, 1403.1174.

[30]  W. Cassing,et al.  Centrality dependence of the direct photon yield and elliptic flow in heavy-ion collisions at sqrt(s)=200 GeV , 2013, 1311.0279.

[31]  B. Muller,et al.  Elliptic flow from thermal photons with magnetic field in holography , 2013, 1308.6568.

[32]  U. Heinz,et al.  Thermal photons as a quark-gluon plasma thermometer reexamined , 2013, 1308.2440.

[33]  A. Leonidov,et al.  Production of photons and dileptons in the Glasma , 2012, 1202.3679.

[34]  D. Kharzeev,et al.  Conformal anomaly as a source of soft photons in heavy ion collisions. , 2012, Physical review letters.

[35]  M. K. Lee,et al.  Measurement of direct photons in Au+Au collisions at √(s(NN))=200 GeV. , 2012, Physical review letters.

[36]  M. Dion,et al.  Viscous photons in relativistic heavy ion collisions , 2011, 1109.4405.

[37]  Z. Citron,et al.  Design, construction, operation and performance of a Hadron Blind Detector for the PHENIX experiment , 2011, 1103.4277.

[38]  J. G. Contreras,et al.  Centrality Dependence of the Charged-Particle Multiplicity Density at Midrapidity in Pb-Pb Collisions at √sNN=2.76 TeV , 2010, 1012.1657.

[39]  Y. Akiba Enhanced production of direct photons in Au+Au collisions at √s NN =200 GeV and implications for the initial temperature , 2010 .

[40]  E. al.,et al.  Detailed measurement of the e(+)e(-) pair continuum in p plus p and Au plus Au collisions at root s(NN)=200 GeV and implications for direct photon production , 2009, 0912.0244.

[41]  I. Zahed,et al.  Thermal photons from heavy ion collisions: A spectral function approach , 2009, 0911.2426.

[42]  J. Thomas,et al.  Energy dependence of π ± , p and ¯ p transverse momentum spectra for Au+Au collisions at √ s NN = 62.4 and 200 GeV , 2008 .

[43]  R. Rapp,et al.  Electromagnetic probes at RHIC-II , 2006, nucl-ex/0611009.

[44]  F. Bauer,et al.  Measurement of direct photon production in p + p collisions at ∫s = 200 GeV , 2007 .

[45]  P. Stankus Direct Photon Production in Relativistic Heavy-Ion Collisions , 2005 .

[46]  D. Kim,et al.  Centrality Dependence of Direct Photon Production in , 2005 .

[47]  R. Rapp,et al.  Hadronic production of thermal photons , 2003, hep-ph/0308085.

[48]  M. A. Kelley,et al.  PHENIX central arm tracking detectors , 2003 .

[49]  C. L. Britton,et al.  PHENIX inner detectors , 2003 .

[50]  L. W. Wright,et al.  PHENIX central arm particle ID detectors , 2003 .

[51]  Sin-Jin Lin,et al.  PHENIX detector overview , 2003 .

[52]  G. J. Alner,et al.  Scaling of pseudorapidity distributions at c.m. energies up to 0.9 TeV , 1986 .