Real Number Computability and Domain Theory

We present the different constructive definitions of real number that can be found in the literature. Using domain theory we analyse the notion of computability that is substantiated by these definitions and we give a definition of computability for real numbers and for functions acting on them. This definition of computability turns out to be equivalent to other definitions given in the literature using different methods. Domain theory is a useful tool to study higher order computability on real numbers. An interesting connection between Scott topology and the standard topologies on the real line and on the space of continuous functions on reals is stated. An important result in this paper is the proof that every computable functional on real numbers is continuous w.r.t. the compact open topology on the function space.

[1]  Jean Vuillemin Exact Real Computer Arithmetic with Continued Fractions , 1990, IEEE Trans. Computers.

[2]  Robert Cartwright,et al.  Exact real arithmetic formulating real numbers as functions , 1990 .

[3]  A. Grzegorczyk On the definitions of computable real continuous functions , 1957 .

[4]  Oliver Aberth Computable aanalysis / Oliver Aberth , 1980 .

[5]  M. Beeson Foundations of Constructive Mathematics , 1985 .

[6]  Hans-Juergen Boehm,et al.  Exact real arithmetic: a case study in higher order programming , 1986, LFP '86.

[7]  Paola Giannini,et al.  Effectively Given Domains and Lambda-Calculus Models , 1984, Inf. Control..

[8]  Hans-J. Boehm Constructive real interpretation of numerical programs , 1987, PLDI 1987.

[9]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[10]  P. Martin-Löf Notes on constructive mathematics , 1970 .

[11]  H. G. Rice,et al.  Recursive real numbers , 1954 .

[12]  A. Troelstra Constructivism in mathematics , 1988 .

[13]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[14]  John R. Myhill,et al.  Criteria of constructibility for real numbers , 1953, Journal of Symbolic Logic.

[15]  E. Wiedmer,et al.  Computing with Infinite Objects , 1980, Theor. Comput. Sci..

[16]  Christoph Kreitz,et al.  Representations of the real numbers and of the open subsets of the set of real numbers , 1987, Ann. Pure Appl. Log..

[17]  Michael Beeson,et al.  Informal Foundations of Constructive Mathematics , 1985 .

[18]  Klaus Weihrauch,et al.  Embedding Metric Spaces Into CPO's , 1981, Theor. Comput. Sci..

[19]  Algirdas Avizienis,et al.  Binary-compatible signed-digit arithmetic , 1899, AFIPS '64 (Fall, part I).

[20]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[21]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[23]  Jean Vuillemin,et al.  Exact real computer arithmetic with continued fractions , 1988, IEEE Trans. Computers.