Density functional theory for efficient ab initio molecular dynamics simulations in solution

We present a density functional for first‐principles molecular dynamics simulations that includes the electrostatic effects of a continuous dielectric medium. It allows for numerical simulations of molecules in solution in a model polar solvent. We propose a smooth dielectric model function to model solvation into water and demonstrate its good numerical properties for total energy calculations and constant energy molecular dynamics. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 662–666, 2002

[1]  M. Colvin,et al.  Guanine−Cytosine Base Pairs in Parallel-Stranded DNA: An ab Initio Study of the Keto−Amino Wobble Pair versus the Enol−Imino Minor Tautomer Pair , 2000 .

[2]  G. Golub,et al.  Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations. , 1972 .

[3]  Yoshihisa Inoue,et al.  A DENSITY FUNCTIONAL STUDY OF THE RECEPTOR-LIGAND INTERACTION : STABILIZATION ENERGY IN AMMONIUM SALT-AROMATIC INTERACTIONS , 1998 .

[4]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[5]  K. Wiberg,et al.  Solvent Effects. 5. Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab Initio Reaction Field Calculations , 1996 .

[6]  W. A. WATERS,et al.  Physical Organic Chemistry: , 1941, Nature.

[7]  Hamann Generalized norm-conserving pseudopotentials. , 1989, Physical review. B, Condensed matter.

[8]  Arieh Warshel,et al.  Langevin Dipoles Model for ab Initio Calculations of Chemical Processes in Solution: Parametrization and Application to Hydration Free Energies of Neutral and Ionic Solutes and Conformational Analysis in Aqueous Solution , 1997 .

[9]  Martin Karplus,et al.  A Smooth Solvation Potential Based on the Conductor-Like Screening Model , 1999 .

[10]  V. Barone,et al.  A plane wave implementation of the polarizable continuum model , 2000 .

[11]  Nino Russo,et al.  Solvation effects on reaction profiles by the polarizable continuum model coupled with the Gaussian density functional method , 1998 .

[12]  F. Gygi,et al.  The solvation of Na+ in water: First-principles simulations , 2000 .

[13]  Jacopo Tomasi,et al.  A new definition of cavities for the computation of solvation free energies by the polarizable continuum model , 1997 .

[14]  J. Fattebert,et al.  Towards grid-based OÑNÖ density-functional theory methods: Optimized nonorthogonal orbitals and multigrid acceleration , 2000 .

[15]  John P. Perdew,et al.  Density functionals from LDA to GGA , 1998 .

[16]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[17]  Jacopo Tomasi,et al.  Geometry optimization of molecular structures in solution by the polarizable continuum model , 1998 .

[18]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[19]  C. Reichardt Solvents and Solvent Effects in Organic Chemistry , 1988 .

[20]  Jiali Gao,et al.  Aqueous basicity of the carboxylate lone pairs and the carbon-oxygen barrier in acetic acid: a combined quantum and statistical mechanical study , 1992 .

[21]  D. R. Hamann,et al.  H 2 O hydrogen bonding in density-functional theory , 1997 .

[22]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[23]  W. Im,et al.  Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation , 1998 .

[24]  Andreas Klamt,et al.  Incorporation of solvent effects into density functional calculations of molecular energies and geometries , 1995 .

[25]  Michiel Sprik,et al.  Ab initio molecular dynamics simulation of liquid water: Comparison of three gradient‐corrected density functionals , 1996 .

[26]  Michiel Sprik,et al.  New generalized gradient approximation functionals , 2000 .

[27]  L. Collatz The numerical treatment of differential equations , 1961 .

[28]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[29]  J. Andrew Grant,et al.  A smooth permittivity function for Poisson–Boltzmann solvation methods , 2001, J. Comput. Chem..

[30]  G. D. Smith,et al.  Molecular dynamics simulation study of hydrogen bonding in aqueous poly(ethylene oxide) solutions. , 2000, Physical review letters.

[31]  M. Marchi,et al.  A dielectric continuum molecular dynamics method , 2001 .

[32]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[33]  H. Scheraga,et al.  Ion Pair Interactions in Aqueous Solution: Self-Consistent Reaction Field (SCRF) Calculations with Some Explicit Water Molecules , 2000 .

[34]  Jiali Gao,et al.  Hybrid Quantum and Molecular Mechanical Simulations: An Alternative Avenue to Solvent Effects in Organic Chemistry , 1996 .

[35]  Galli,et al.  Water under pressure , 2000, Physical review letters.

[36]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .