Solving weighted CSP by maintaining arc consistency

Recently, a general definition of arc consistency (AC) for soft constraint frameworks has been proposed by T. Schiex [Proc. CP-2000, Singapore, 2000, pp. 411-424]. In this paper we specialize this definition to weighted CSP and introduce two O(ed3) enforcing algorithms. Then, we refine the definition and introduce a stronger form of arc consistency (AC*) along with two O(n2d2+ed3) algorithms. As in the CSP case, an important application of AC is to combine it with search. We empirically demonstrate that a branch and bound algorithm that maintains either AC or AC* is a state-of-the-art general solver for weighted CSP. Our experiments cover binary Max-CSP and Max-SAT problems.

[1]  Eugene C. Freuder,et al.  Improved relaxation and search methods for approximate constraint satisfaction with a maximin criter , 1990 .

[2]  Thomas Schiex,et al.  Russian Doll Search for Solving Constraint Optimization Problems , 1996, AAAI/IAAI, Vol. 1.

[3]  Javier Larrosa,et al.  Node and arc consistency in weighted CSP , 2002, AAAI/IAAI.

[4]  Roger Mohr,et al.  Good Old Discrete Relaxation , 1988, ECAI.

[5]  Robert M. Haralick,et al.  Structural Descriptions and Inexact Matching , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Roland H. C. Yap,et al.  Introduction to the Special Issue on Bioinformatics , 2004, Constraints.

[7]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Thomas Schiex,et al.  Semiring-Based CSPs and Valued CSPs: Frameworks, Properties, and Comparison , 1999, Constraints.

[9]  Francesca Rossi,et al.  Semiring-based constraint satisfaction and optimization , 1997, JACM.

[10]  Richard J. Wallace,et al.  Partial Constraint Satisfaction , 1989, IJCAI.

[11]  Jérôme Lang,et al.  Uncertainty in Constraint Satisfaction Problems: a Probalistic Approach , 1993, ECSQARU.

[12]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.

[13]  Christian Bessiere,et al.  Refining the Basic Constraint Propagation Algorithm , 2001, JFPLC.

[14]  Javier Larrosa,et al.  A General Scheme for Multiple Lower Bound Computation in Constraint Optimization , 2001, CP.

[15]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[17]  Thomas Schiex,et al.  Possibilistic Constraint Satisfaction Problems or "How to Handle Soft Constraints?" , 1992, UAI.

[18]  Christian Bessiere,et al.  Arc Consistency for General Constraint Networks: Preliminary Results , 1997, IJCAI.

[19]  Thomas Schiex,et al.  Valued Constraint Satisfaction Problems: Hard and Easy Problems , 1995, IJCAI.

[20]  Barbara M. Smith,et al.  The Phase Transition and the Mushy Region in Constraint Satisfaction Problems , 1994, ECAI.

[21]  Thomas Schiex,et al.  Maintaining Reversible DAC for Max-CSP , 1999, Artif. Intell..

[22]  Richard J. Wallace,et al.  Enhancements of Branch and Bound Methods for the Maximal Constraint Satisfaction Problem , 1996, AAAI/IAAI, Vol. 1.

[23]  Pedro Meseguer,et al.  Specializing Russian Doll Search , 2001, CP.

[24]  K. B. Venable,et al.  CP-networks: semantics, complexity, approximations and extensions , 2002 .

[25]  Tuomas Sandholm,et al.  Algorithm for optimal winner determination in combinatorial auctions , 2002, Artif. Intell..

[26]  Brian Borchers,et al.  A Two-Phase Exact Algorithm for MAX-SAT and Weighted MAX-SAT Problems , 1998, J. Comb. Optim..

[27]  Hachemi Bennaceur,et al.  A Weighted Arc Consistency Technique for MAX-CSP , 1998, ECAI.

[28]  Simon de Givry,et al.  Radio Link Frequency Assignment , 1999, Constraints.