Guessing models and the approachability ideal
暂无分享,去创建一个
[1] S. Shelah. Advances in Cardinal Arithmetic , 2007, 0708.1979.
[2] Laura Fontanella. Strong tree properties for two successive cardinals , 2012, Arch. Math. Log..
[4] William J. Mitchell. Adding Closed Unbounded Subsets of ω2 with Finite Forcing , 2005, Notre Dame J. Formal Log..
[5] Christoph Weiß. The combinatorial essence of supercompactness , 2012, Ann. Pure Appl. Log..
[6] Joel David Hamkins,et al. Extensions with the approximation and cover properties have no new large cardinals , 2003, math/0307229.
[7] Saharon Shelah,et al. Reflecting stationary sets and successors of singular cardinals , 1991, Arch. Math. Log..
[8] William J. Mitchell,et al. On the Hamkins approximation property , 2006, Ann. Pure Appl. Log..
[9] John Krueger,et al. Quotients of strongly Proper Forcings and Guessing Models , 2016, J. Symb. Log..
[11] Matteo Viale. Guessing models and generalized Laver diamond , 2012, Ann. Pure Appl. Log..
[12] Ju l 2 00 4 I [ ω 2 ] can be the nonstationary ideal on Cof ( ω 1 ) , 2004 .
[13] Todd Eisworth,et al. Successors of Singular Cardinals , 2010 .
[14] Bernhard König. Forcing indestructibility of set-theoretic axioms , 2007, J. Symb. Log..
[15] Joel David Hamkins. Gap forcing , 2001 .
[16] M. Viale,et al. On the consistency strength of the proper forcing axiom , 2010, 1012.2046.
[17] Laura Fontanella. Strong tree properties for small cardinals , 2013, J. Symb. Log..
[18] Uri Abraham,et al. Aronszajn trees on aleph2 and aleph3 , 1983, Ann. Pure Appl. Log..
[19] B. Velickovic. Iteration of Semiproper Forcing Revisited , 2014, 1410.5095.
[20] James Cummings,et al. The Tree Property , 1998 .
[21] William J. Mitchell. A weak variation of shelah's I[ω2] , 2004, Journal of Symbolic Logic.
[22] Rémi Strullu. MRP, tree properties and square principles , 2011, J. Symb. Log..
[23] Saharon Shelah,et al. On Successors of Singular Cardinals , 1979 .
[24] Sean D. Cox,et al. Indestructible Guessing Models and the Continuum , 2015, 1510.05297.
[25] B. Velickovic,et al. Stationary reflection principles and two cardinal tree properties , 2013, Journal of the Institute of Mathematics of Jussieu.
[26] Menachem Magidor. On the role of supercompact and extendible cardinals in logic , 1971 .
[27] Spencer Unger. A model of Cummings and Foreman revisited , 2014, Ann. Pure Appl. Log..
[28] Itay Neeman. Forcing with Sequences of Models of Two Types , 2014, Notre Dame J. Formal Log..
[29] C. Weiß. Subtle and Ineffable Tree Properties , 2010 .