Guessing models and the approachability ideal

Starting with two supercompact cardinals we produce a generic extension of the universe in which the principles ${\rm ISP}(\omega_2)$ and ${\rm ISP}(\omega_3)$ hold simultaneously, and the restriction of the approachability ideal $I[\omega_2]$ to the set of ordinals of cofinality $\omega_1$ is the non stationary ideal on this set.

[1]  S. Shelah Advances in Cardinal Arithmetic , 2007, 0708.1979.

[2]  Laura Fontanella Strong tree properties for two successive cardinals , 2012, Arch. Math. Log..

[4]  William J. Mitchell Adding Closed Unbounded Subsets of ω2 with Finite Forcing , 2005, Notre Dame J. Formal Log..

[5]  Christoph Weiß The combinatorial essence of supercompactness , 2012, Ann. Pure Appl. Log..

[6]  Joel David Hamkins,et al.  Extensions with the approximation and cover properties have no new large cardinals , 2003, math/0307229.

[7]  Saharon Shelah,et al.  Reflecting stationary sets and successors of singular cardinals , 1991, Arch. Math. Log..

[8]  William J. Mitchell,et al.  On the Hamkins approximation property , 2006, Ann. Pure Appl. Log..

[9]  John Krueger,et al.  Quotients of strongly Proper Forcings and Guessing Models , 2016, J. Symb. Log..

[11]  Matteo Viale Guessing models and generalized Laver diamond , 2012, Ann. Pure Appl. Log..

[12]  Ju l 2 00 4 I [ ω 2 ] can be the nonstationary ideal on Cof ( ω 1 ) , 2004 .

[13]  Todd Eisworth,et al.  Successors of Singular Cardinals , 2010 .

[14]  Bernhard König Forcing indestructibility of set-theoretic axioms , 2007, J. Symb. Log..

[15]  Joel David Hamkins Gap forcing , 2001 .

[16]  M. Viale,et al.  On the consistency strength of the proper forcing axiom , 2010, 1012.2046.

[17]  Laura Fontanella Strong tree properties for small cardinals , 2013, J. Symb. Log..

[18]  Uri Abraham,et al.  Aronszajn trees on aleph2 and aleph3 , 1983, Ann. Pure Appl. Log..

[19]  B. Velickovic Iteration of Semiproper Forcing Revisited , 2014, 1410.5095.

[20]  James Cummings,et al.  The Tree Property , 1998 .

[21]  William J. Mitchell A weak variation of shelah's I[ω2] , 2004, Journal of Symbolic Logic.

[22]  Rémi Strullu MRP, tree properties and square principles , 2011, J. Symb. Log..

[23]  Saharon Shelah,et al.  On Successors of Singular Cardinals , 1979 .

[24]  Sean D. Cox,et al.  Indestructible Guessing Models and the Continuum , 2015, 1510.05297.

[25]  B. Velickovic,et al.  Stationary reflection principles and two cardinal tree properties , 2013, Journal of the Institute of Mathematics of Jussieu.

[26]  Menachem Magidor On the role of supercompact and extendible cardinals in logic , 1971 .

[27]  Spencer Unger A model of Cummings and Foreman revisited , 2014, Ann. Pure Appl. Log..

[28]  Itay Neeman Forcing with Sequences of Models of Two Types , 2014, Notre Dame J. Formal Log..

[29]  C. Weiß Subtle and Ineffable Tree Properties , 2010 .