A Monte Carlo method for conformational analysis of saccharides.

[1]  B. Meyer,et al.  Simulations of the static and dynamic molecular conformations of xyloglucan. The role of the fucosylated sidechain in surface-specific sidechain folding. , 1991, The Plant journal : for cell and molecular biology.

[2]  M. Cygler,et al.  Recognition of a cell-surface oligosaccharide of pathogenic Salmonella by an antibody Fab fragment. , 1991, Science.

[3]  Homans Sw,et al.  A molecular mechanical force field for the conformational analysis of oligosaccharides: comparison of theoretical and crystal structures of Man alpha 1-3Man beta 1-4GlcNAc. , 1990 .

[4]  W. F. V. Gunsteren,et al.  Moleküldynamik‐Computersimulationen; Methodik, Anwendungen und Perspektiven in der Chemie , 1990 .

[5]  J. Brisson,et al.  Conformational analysis of key disaccharide components of Brucella A and M antigens , 1990 .

[6]  T. Peters,et al.  Conformational analysis of a disaccharide fragment of the polysaccharide antigen of Streptococcus pneumoniae type 1 using n.m.r. spectroscopy and HSEA calculations. , 1990, Carbohydrate research.

[7]  A. Imberty,et al.  Relaxed potential energy surfaces of N‐linked oligosaccharides: The mannose‐α(1 → 3)‐mannose case , 1989 .

[8]  Alfred D. French,et al.  Comparisons of rigid and relaxed conformational maps for cellobiose and maltose , 1989 .

[9]  W. F. Gunsteren,et al.  Time-dependent distance restraints in molecular dynamics simulations , 1989 .

[10]  W. F. Gunsteren,et al.  Computer Simulation by Molecular Dynamics as a Tool for Modelling of Molecular Systems , 1989 .

[11]  A. Imberty,et al.  Relaxed potential energy surfaces of maltose , 1989 .

[12]  J. Brady,et al.  Conformational analysis and molecular dynamics simulations of maltose , 1988, Biopolymers.

[13]  J. Brady,et al.  A revised potential-energy surface for molecular mechanics studies of carbohydrates. , 1988, Carbohydrate research.

[14]  W. Vangunsteren,et al.  CONFORMATIONAL DYNAMICS DETECTED BY NUCLEAR MAGNETIC-RESONANCE NOE VALUES AND J-COUPLING CONSTANTS , 1988 .

[15]  D. Cumming,et al.  Reevaluation of rotamer populations for 1,6 linkages: reconciliation with potential energy calculations. , 1987, Biochemistry.

[16]  R. Dwek,et al.  Structure and dynamics in oligomannose-type oligosaccharides. , 1987, Biochemistry.

[17]  D. Cumming,et al.  Virtual and solution conformations of oligosaccharides. , 1987, Biochemistry.

[18]  S. Pérez,et al.  Solid state and solution features of amylose and amylosic fragments , 1987 .

[19]  W. Richards,et al.  Conformational transitions in N-linked oligosaccharides. , 1986, Biochemistry.

[20]  Serge Pérez,et al.  Conformational-energy calculations for oligosaccharides: a comparison of methods and a strategy of calculation☆ , 1986 .

[21]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[22]  A. Shashkov,et al.  Nuclear overhauser effects for methyl β-maltoside and the conformational states of maltose in aqueous solution , 1986 .

[23]  Alexander S. Shashkov,et al.  Nuclear overhauser effect and conformational states of cellobiose in aqueous solution , 1985 .

[24]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[25]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[26]  J. Brisson,et al.  Solution conformation of alpha D(1-3)- and alpha D(1-6)-linked oligomannosides using proton nuclear magnetic resonance. , 1983, Biochemistry.

[27]  R. Lemieux,et al.  The conformational analysis of oligosaccharides by H-NMR and HSEA calculation. , 1983, Archives of biochemistry and biophysics.

[28]  K. Bock The preferred conformation of oligosaccharides in solution inferred from high resolution NMR data and hard sphere exo-anomeric calculations , 1983 .

[29]  J. Tropp Dipolar relaxation and nuclear Overhauser effects in nonrigid molecules: The effect of fluctuating internuclear distances , 1980 .

[30]  Kjeld Rasmussen,et al.  Conformations of disaccharides by empirical force-field calculations: part II, β-cellobiose , 1979 .

[31]  D. Brant,et al.  A Monte Carlo study of the amylosic chain conformation , 1978 .

[32]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[33]  A. Perlin,et al.  13C-1H inter-residue, coupling in disaccharides, and the orientations of glycosidic bonds , 1977 .

[34]  J. Mccammon,et al.  Distances obtained from nuclear magnetic resonance nuclear Overhauser effect and relaxation time. Measurements in organic structure determination. Distances involving internally rotating methyl groups. Application to cis- and trans-crotonaldehyde , 1974 .

[35]  K. Binder,et al.  Dynamic properties of the Monte Carlo method in statistical mechanics , 1973 .

[36]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[37]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[38]  Y. Wang,et al.  Preferred conformation of C-glycosides. 9. Conformational analysis of 1,4-linked carbon disaccharides , 1992 .

[39]  L. Poppe,et al.  Nuclear magnetic resonance of hydroxyl and amido, protons of oligosaccharides in aqueous solution: evidence for a strong intramolecular hydrogen bond in sialic acid residues , 1991 .

[40]  D. Ripoll,et al.  On the multiple‐minima problem in the conformational analysis of polypeptides. IV. Application of the electrostatically driven monte carlo method to the 20‐residue membrane‐bound portion of melittin , 1990, Biopolymers.

[41]  R. Lemieux Rhône-Poulenc Lecture. The origin of the specificity in the recognition of oligosaccharides by proteins , 1989 .

[42]  Bernd Meyer,et al.  Further justification for the exo-anomeric effect. Conformational analysis based on nuclear magnetic resonance spectroscopy of oligosaccharides , 1982 .