Finding normal solutions in piecewise linear programming

Letf: ℝn → (−∞, ∞] be a convex polyhedral function. We show that if any standard active set method for quadratic programming (QP) findsx(t)= arg minx¦x¦2/2+tf(x) for somet> 0, then its final working set defines a simple equality QP subproblem, whose Lagrange multiplier can be used both for testing ift is large enough forx(t) to coincide with the normal minimizer off, and for increasingt otherwise. The QP subproblem may easily be solved via the matrix factorizations used for findingx(t). This opens up the way for efficient implementations. We also give finite methods for computing the whole trajectory {x(t)}t≥0, minimizingf over an ellipsoid, and choosing penalty parameters inL1QP methods for strictly convex QP.

[1]  G. Dantzig,et al.  Notes on Linear Programming: Part 1. The Generalized Simplex Method for Minimizing a Linear Form under Linear Inequality Restraints , 1954 .

[2]  P. Wolfe THE SIMPLEX METHOD FOR QUADRATIC PROGRAMMING , 1959 .

[3]  J. Boot,et al.  On Sensitivity Analysis in Convex Quadratic Programming Problems , 1963 .

[4]  P. Wolfe A Technique for Resolving Degeneracy in Linear Programming , 1963 .

[5]  K. Ritter,et al.  A method for solving nonlinear maximum-problems depending on parameters , 1967 .

[6]  K. Ritter,et al.  A Parametric Method for Semidefinite Quadratic Programs , 1969 .

[7]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[8]  O. Mangasarian,et al.  NONLINEAR PERTURBATION OF LINEAR PROGRAMS , 1979 .

[9]  Regina Benveniste One way to solve the parametric quadratic programming problem , 1981, Math. Program..

[10]  K. Ritter On Parametric Linear and Quadratic Programming Problems. , 1981 .

[11]  O. Mangasarian Iterative Solution of Linear Programs , 1981 .

[12]  M. R. Osborne,et al.  A Descent Algorithm for Minimizing Polyhedral Convex Functions , 1983 .

[13]  K. Jittorntrum Solution point differentiability without strict complementarity in nonlinear programming , 1984 .

[14]  Michael J. Best,et al.  Equivalence of some quadratic programming algorithms , 1984, Math. Program..

[15]  O. Mangasarian Normal solutions of linear programs , 1984 .

[16]  M. R. Osborne Finite Algorithms in Optimization and Data Analysis , 1985 .

[17]  K. Kiwiel A Method for Solving Certain Quadratic Programming Problems Arising in Nonsmooth Optimization , 1986 .

[18]  Kazimierz Malanowski,et al.  Stability of solutions to convex problems of optimization , 1987 .

[19]  S. Lucidi A new result in the theory and computation of the least-norm solution of a linear program , 1987 .

[20]  Stefano Lucidi A finite algorithm for the least two-norm solution of a linear program 1 , 1987 .

[21]  R. Fletcher Practical Methods of Optimization , 1988 .

[22]  D. M. Ryan,et al.  On the solution of highly degenerate linear programmes , 1988, Math. Program..

[23]  O. Mangasarian,et al.  Error bounds for strongly convex programs and (super)linearly convergent iterative schemes for the least 2-norm solution of linear programs , 1988 .

[24]  P. Gill,et al.  Inertia-controlling methods for quadratic programming , 1988 .

[25]  K. Kiwiel A Dual Method for Certain Positive Semidefinite Quadratic Programming Problems , 1989 .

[26]  Helga Schramm,et al.  Eine Kombination von Bundle- und Trust-region-Verfahren zur Lösung nichtdifferenzierbarer Optimierungsprobleme , 1989 .

[27]  Krzysztof C. Kiwiel,et al.  Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..

[28]  Michael A. Saunders,et al.  Inertia-Controlling Methods for General Quadratic Programming , 1991, SIAM Rev..

[29]  Michael C. Ferris,et al.  Finite perturbation of convex programs , 1991 .

[30]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[31]  R. Fletcher,et al.  Resolving degeneracy in quadratic programming , 1993, Ann. Oper. Res..

[32]  K. Kiwiel A Cholesky dual method for proximal piecewise linear programming , 1994 .

[33]  A. Sartenaer,et al.  Automatic decrease of the penalty parameter in exact penalty function methods , 1995 .

[34]  Yurii Nesterov,et al.  New variants of bundle methods , 1995, Math. Program..

[35]  Krzysztof C. Kiwiel,et al.  Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems and variational inequalities , 1995, Math. Program..

[36]  M. Best An Algorithm for the Solution of the Parametric Quadratic Programming Problem , 1996 .