Pika and vole mitochondrial genomes increase support for both rodent monophyly and glires.

[1]  A. E. Wood WHAT, IF ANYTHING, IS A RABBIT? , 1957 .

[2]  L. V. Valen,et al.  A POSSIBLE ORIGIN FOR RABBITS , 1964 .

[3]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.

[4]  Michael D. Hendy,et al.  A Framework for the Quantitative Study of Evolutionary Trees , 1989 .

[5]  J. Huelsenbeck Tree-Length Distribution Skewness: An Indicator of Phylogenetic Information , 1991 .

[6]  M. Steel,et al.  Distributions of Tree Comparison Metrics—Some New Results , 1993 .

[7]  G. Holmquist,et al.  Organization of mutations along the genome: a prime determinant of genome evolution. , 1994, Trends in ecology & evolution.

[8]  E. Wang,et al.  There is substantial agreement among interspecies estimates of DNA repair activity , 1996, Mechanisms of Ageing and Development.

[9]  J. Adachi,et al.  MOLPHY version 2.3 : programs for molecular phylogenetics based on maximum likelihood , 1996 .

[10]  C. Gissi,et al.  The guinea-pig is not a rodent , 1996, Nature.

[11]  L. Samson,et al.  DNA repair functions in heterologous cells. , 1996, Critical reviews in biochemistry and molecular biology.

[12]  S Karlin,et al.  Compositional differences within and between eukaryotic genomes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Lake,et al.  Phylogenetic inference: how much evolutionary history is knowable? , 1997, Molecular biology and evolution.

[14]  A. V. van Zeeland,et al.  Effect of nucleotide excision repair on hprt gene mutations in rodent cells exposed to DNA ethylating agents. , 1997, Mutagenesis.

[15]  J. Shoshani,et al.  Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. , 1998, Molecular phylogenetics and evolution.

[16]  M. Steel,et al.  A covariotide model explains apparent phylogenetic structure of oxygenic photosynthetic lineages. , 1998, Molecular biology and evolution.

[17]  P. Waddell,et al.  Towards resolving the interordinal relationships of placental mammals. , 1999, Systematic biology.

[18]  M. Miyamoto,et al.  Phylogenetic assessment of molecular and morphological data for eutherian mammals. , 1999, Systematic biology.

[19]  D. Penny,et al.  Mammalian evolution: timing and implications from using the LogDeterminant transform for proteins of differing amino acid composition. , 1999, Systematic biology.

[20]  P J Waddell,et al.  Using novel phylogenetic methods to evaluate mammalian mtDNA, including amino acid-invariant sites-LogDet plus site stripping, to detect internal conflicts in the data, with special reference to the positions of hedgehog, armadillo, and elephant. , 1999, Systematic biology.

[21]  B. Glickman,et al.  Human DNA repair systems: An overview , 1999, Environmental and molecular mutagenesis.

[22]  N. Vassetzky,et al.  The evolutionary position of dormice (Gliridae) in Rodentia determined by a novel short retroposon. , 1999, Molecular biology and evolution.

[23]  G. Bernardi,et al.  Diversity and phylogenetic implications of CsCl profiles from rodent DNAs. , 2000, Molecular phylogenetics and evolution.

[24]  A. Janke,et al.  Molecular estimates of primate divergences and new hypotheses for primate dispersal and the origin of modern humans. , 2004, Hereditas.

[25]  E. Douzery,et al.  Variance of molecular datings, evolution of rodents and the phylogenetic affinities between Ctenodactylidae and Hystricognathi , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  D D Pollock,et al.  A case for evolutionary genomics and the comprehensive examination of sequence biodiversity. , 2000, Molecular biology and evolution.

[27]  J. Schmitz,et al.  The complete mitochondrial genome of Tupaia belangeri and the phylogenetic affiliation of scandentia to other eutherian orders. , 2000, Molecular biology and evolution.

[28]  C. Gissi,et al.  Where do rodents fit? Evidence from the complete mitochondrial genome of Sciurus vulgaris. , 2000, Molecular biology and evolution.

[29]  P. Waddell,et al.  A phylogenetic foundation for comparative mammalian genomics. , 2001, Genome informatics. International Conference on Genome Informatics.

[30]  D. Penny,et al.  Mitochondrial genomes of a bandicoot and a brushtail possum confirm the monophyly of australidelphian marsupials , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  Diana J. Kao,et al.  Parallel adaptive radiations in two major clades of placental mammals , 2001, Nature.

[32]  W. Murphy,et al.  Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics , 2001, Science.

[33]  D. Penny,et al.  Implications for bat evolution from two new complete mitochondrial genomes. , 2001, Molecular biology and evolution.

[34]  A. Janke,et al.  Molecular evidence of an African Phiomorpha-South American Caviomorpha clade and support for Hystricognathi based on the complete mitochondrial genome of the cane rat (Thryonomys swinderianus). , 2001, Molecular phylogenetics and evolution.

[35]  C. Tirard,et al.  Molecular systematics of sciurognathi (rodentia): the mitochondrial cytochrome b and 12S rRNA genes support the Anomaluroidea (Pedetidae and Anomaluridae). , 2002, Molecular phylogenetics and evolution.

[36]  David Penny,et al.  Four new mitochondrial genomes and the increased stability of evolutionary trees of mammals from improved taxon sampling. , 2002, Molecular biology and evolution.