A system for 3D texture-based probabilistic object recognition and its applications

This article presents a system for texture-based probabilistic classification and localisation of three-dimensional objects in two-dimensional digital images and discusses selected applications. In contrast to shape-based approaches, our texture-based method does not rely on object features extracted using image segmentation techniques. Rather, the objects are described by local feature vectors computed directly from image pixel values using the wavelet transform. Both gray level and colour images can be processed. In the training phase, object features are statistically modelled as normal density functions. In the recognition phase, the system classifies and localises objects in scenes with real heterogeneous backgrounds. Feature vectors are calculated and a maximisation algorithm compares the learned density functions with the extracted feature vectors and yields the classes and poses of objects found in the scene. Experiments carried out on a real dataset of over 40,000 images demonstrate the robustness of the system in terms of classification and localisation accuracy. Finally, two important real application scenarios are discussed, namely recognising museum exhibits from visitors’ own photographs and classification of metallography images.

[1]  Heinrich Niemann,et al.  Feature Extraction with Wavelet Transformation for Statistical Object Recognition , 2005, CORES.

[2]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[3]  Kinshuk,et al.  Advanced Learning Technologies , 2001 .

[4]  David Fofi,et al.  Uncalibrated reconstruction: an adaptation to structured light vision , 2003, Pattern Recognit..

[5]  Josef Pösl,et al.  Erscheinungsbasierte statistische Objekterkennung , 2002, Informatik Forschung und Entwicklung.

[6]  Yali Amit,et al.  A coarse-to-fine strategy for multiclass shape detection , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Tan-Hsu Tan,et al.  The Ubiquitous Museum Learning Environment: Concept, Design, Implementation, and a Case Study , 2006, Sixth IEEE International Conference on Advanced Learning Technologies (ICALT'06).

[8]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Thierry Paquet,et al.  A multiple agent architecture for handwritten text recognition , 2004, Pattern Recognit..

[10]  Michael K. Ng,et al.  Wavelet based methods on patterned fabric defect detection , 2005, Pattern Recognit..

[11]  Michael Grafe,et al.  Eine mobile Augmented Reality Versuchsplattform zur Untersuchung und Evaluation von Fahrzeugergonomien , 2005, SimVis.

[12]  Ajay Kumar,et al.  Neural network based detection of local textile defects , 2003, Pattern Recognit..

[13]  G. A Theory for Multiresolution Signal Decomposition : The Wavelet Representation , 2004 .

[14]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[15]  Michael Reinhold Robuste, probabilistische, erscheinungsbasierte Objekterkennung , 2004 .

[16]  Longin Jan Latecki,et al.  Optimal partial shape similarity , 2005, Image Vis. Comput..

[17]  Massimiliano Pontil,et al.  Support Vector Machines for 3D Object Recognition , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Haesun Park,et al.  Fingerprint classification using fast Fourier transform and nonlinear discriminant analysis , 2005, Pattern Recognit..

[19]  Paul H. Lewis,et al.  SCULPTEUR: Multimedia Retrieval for Museums , 2004, CIVR.

[20]  Bernt Schiele,et al.  Analyzing appearance and contour based methods for object categorization , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[21]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[22]  Martial Hebert,et al.  The optimal distance measure for object detection , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[23]  Marcin Grzegorzek,et al.  Wavelet and Eigen-Space Feature Extraction for Classification of Metallography Images , 2007, EJC.

[24]  Y. Bentoutou,et al.  An invariant approach for image registration in digital subtraction angiography , 2002, Pattern Recognit..

[25]  Lora Aroyo,et al.  Personalized Museum Experience: The Rijksmuseum Use Case , 2007 .

[26]  Bernt Schiele,et al.  Recognition without Correspondence using Multidimensional Receptive Field Histograms , 2004, International Journal of Computer Vision.

[27]  Ralph Gross,et al.  Appearance-based face recognition and light-fields , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[29]  Takeo Kanade,et al.  Object Detection Using the Statistics of Parts , 2004, International Journal of Computer Vision.

[30]  Joachim Denzler,et al.  MOBSY: Integration of Vision and Dialogue in Service Robots , 2001, ICVS.

[31]  Stuart Geman,et al.  Context and Hierarchy in a Probabilistic Image Model , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[32]  Bernt Schiele,et al.  Analyzing contour and appearance based methods for object categorization , 2003, CVPR 2003.

[33]  Julian Kerr Toward Generic Model-Based Object Recognition by Knowledge Acquisition and Machine Learning , 2003 .

[34]  Joachim Hornegger,et al.  Statistische Modellierung, Klassifikation und Lokalisation von Objekten , 1996, Ausgezeichnete Informatikdissertationen.

[35]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[36]  Young Do Kwon,et al.  Development of a home service robot 'ISSAC' , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[37]  Kai Huang,et al.  Fingerprint Classification Based on Extraction and Analysis of Singularities and Pseudoridges , 2001, VIP.

[38]  Sung-Jung Cho,et al.  Bayesian network modeling of strokes and their relationships for on-line handwriting recognition , 2004, Pattern Recognit..

[39]  Haifeng Chen,et al.  Model based object recognition by robust information fusion , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[40]  Demetri Terzopoulos,et al.  Model-Based and Image-Based Methods for Facial Image Synthesis, Analysis and Recognition , 2004, FGR.

[41]  Pong C. Yuen,et al.  Tongue image matching using color content , 2002, Pattern Recognit..

[42]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[43]  Jürgen Gausemeier,et al.  Using Augmented Reality Technology to Support the Automobile Development , 2004, CSCWD.

[44]  Heinrich Niemann,et al.  Statistical Object Recognition Including Color Modeling , 2005, ICIAR.

[45]  Antonio Torralba,et al.  Sharing Visual Features for Multiclass and Multiview Object Detection , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.