Optimal Hydrogen Production through Revamping a Naphtha-Reforming Unit : Catalyst Deactivation

Generating the necessary volume of hydrogen to produce high-quality gasoline has become a critical issue in some refineries, where an important hydrogen source is an old semi-regenerative catalytic naphtha-reforming unit. We studied the possibility of redesigning this unit to obtain an additional ∼0.1 millon of standard cubic metric per day of hydrogen while fulfilling the 15 ppm sulfur specification with the refurbished naphtha hydrotreater. The reforming unit (which has three equal-size reactors in series) was simulated using a previously developed kinetic lump model and a new catalyst deactivation model. The constants for the apparent kinetics model were adjusted using commercial data from one cycle of operation. The deactivation model was developed on the basis of pilot-plant and commercial data from an operating unit. The constants for both models were obtained using a genetic algorithm. The integrated model was used to both estimate the impact of including a new reactor and optimize existing reactor...