Soil moisture redistribution and infiltration in frozen sandy soils

Infiltration into frozen soil is a result of the whole climate dynamics of the preceding winter with all its importance for the freezing of the soil. Therefore a predictive infiltration model needs to include a proper description of the main processes of soil water and heat transfer during season-long periods. Such a model may assume two water-conducting flow domains. A lysimeter experiment was set up with the aim of studying these processes in two different sandy soils. Frequent measurements of total and liquid soil water content, soil temperature, and groundwater level were made during two winters with contrasting meteorological conditions. The main problems in the simulation of the two winters were (1) frost-induced upward water redistribution, (2) rate of infiltration in the initially air-filled pores, and (3) heat transfer caused by snowmelt refreezing in the frozen soil. An extensive calibration of the model suggested that some key empirical parameters were not constant for the two soils and the two seasons. Complementary methods for determining the hydraulic conductivity of frozen unsaturated field soils are necessary to further improve the model.

[1]  Gerald N. Flerchinger,et al.  Simultaneous Heat and Water Model of a Freezing Snow-Residue-Soil System I. Theory and Development , 1989 .

[2]  D. H. Male,et al.  Numerical analysis of simultaneous heat and mass transfer during infiltration into frozen ground , 1997 .

[3]  M. Seyfried,et al.  Use of air permeability to estimate infiltrability of frozen soil , 1997 .

[4]  R. Granger,et al.  Snowmelt infiltration to frozen Prairie soils , 1984 .

[5]  R. D. Miller,et al.  11 – Freezing Phenomena in Soils , 1980 .

[6]  J. Baker,et al.  The Soil Freezing Characteristic: Its Measurement and Similarity to the Soil Moisture Characteristic , 1996 .

[7]  Ingmar Messing,et al.  Near‐Saturated Hydraulic Conductivity in Soils of Contrasting Texture Measured by Tension Infiltrometers , 1995 .

[8]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[9]  R. Harlan,et al.  Analysis of coupled heat‐fluid transport in partially frozen soil , 1973 .

[10]  Lars-Christer Lundin,et al.  Surface runoff and soil water percolation as affected by snow and soil frost , 1991 .

[11]  Per-Erik Jansson,et al.  Simulating model for soil water and heat conditions , 1991 .

[12]  Per-Erik Jansson,et al.  Water balance and soil moisture dynamics of field plots with barley and grass ley , 1991 .

[13]  Gerald N. Flerchinger,et al.  A test of the radiative energy balance of the SHAW model for snowcover , 1996 .

[14]  Y. Mualem A New Model for Predicting the Hydraulic Conductivity , 1976 .

[15]  Donald I. Norum,et al.  Heat and mass transfer in a freezing unsaturated porous medium. , 1980 .

[16]  D. Kane,et al.  Water movement into seasonally frozen soils , 1983 .

[17]  Daniel Stadler,et al.  Measurement of water and solute dynamics in freezing soil columns with time domain reflectometry , 1997 .

[18]  D. Kane Snowmelt infiltration into seasonally frozen soils , 1980 .

[19]  P. Jansson,et al.  Preferential water flow in a frozen soil - A two-domain model approach , 1996 .

[20]  K. K. Watson An instantaneous profile method for determining the hydraulic conductivity of unsaturated porous materials , 1966 .

[21]  Per-Erik Jansson,et al.  Test of two SVAT snow submodels during different winter conditions , 1998 .

[22]  L. Lundin Hydraulic properties in an operational model of frozen soil , 1990 .

[23]  Jean-Marie Konrad,et al.  A model for water transport and ice lensing in freezing soils , 1993 .

[24]  E. Perfect,et al.  Thermally induced water migration in frozen soils , 1980 .

[25]  Hannes Flühler,et al.  Modelling vertical and lateral water flow in frozen and sloped forest soil plots , 1997 .