NQP = co-C=P
暂无分享,去创建一个
[1] Lov K. Grover. A fast quantum mechanical algorithm for database search , 1996, STOC '96.
[2] Umesh V. Vazirani,et al. Quantum Complexity Theory , 1997, SIAM J. Comput..
[3] Charles H. Bennett,et al. Logical reversibility of computation , 1973 .
[4] R. Feynman. Quantum mechanical computers , 1986 .
[5] Daniel R. Simon,et al. On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[6] Stuart A. Kurtz,et al. Gap-definable counting classes , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.
[7] D. Deutsch,et al. Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[8] D. Deutsch. Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[9] Leonard M. Adleman,et al. Quantum Computability , 1997, SIAM J. Comput..
[10] Jacobo Torán,et al. Complexity classes defined by counting quantifiers , 1991, JACM.
[11] Lance Fortnow,et al. Complexity limitations on quantum computation , 1999, J. Comput. Syst. Sci..
[12] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[13] Seinosuke Toda,et al. PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..
[14] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[15] I PaulBenioff. Quantum Mechanical Hamiltonian Models of Turing Machines , 1982 .
[16] Stephen A. Fenner,et al. Determining acceptance possibility for a quantum computation is hard for the polynomial hierarchy , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[17] Stephen A. Fenner. Quantum NP is Hard for PH , 1998 .
[18] H. S. Allen. The Quantum Theory , 1928, Nature.