Algebraic Ordered Sets and Their Generalizations
暂无分享,去创建一个
[1] Evelyn Nelson. Z-Continuous algebras , 1981 .
[2] A. Batbedat. Des Schemas En Demi-Groupes Commutatifs , 1978 .
[3] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[4] Rudolf-E. Hoffmann,et al. Continuous posets and adjoint sequences , 1979 .
[5] Marcel Erné,et al. The Dedekind-MacNeille completion as a reflector , 1991 .
[6] Marcel Erné,et al. A completion - invariant extension of the concept of continuous lattices , 1981 .
[7] K. Hofmann,et al. A Compendium of Continuous Lattices , 1980 .
[8] M. Erné. On the existence of decompositions in lattices , 1983 .
[9] E. Szpilrajn. Sur l'extension de l'ordre partiel , 1930 .
[10] Jimmie D. Lawson. The Versatile Continuous Order , 1987, MFPS.
[11] Ideal completion and Stone representation of ideal-distributive ordered sets , 1992 .
[12] R. P. Dilworth,et al. Algebraic theory of lattices , 1973 .
[13] G. Grätzer. On the Family of Certain Subalgebras of a Universal Algebra , 1965 .
[14] A. Lévy. Axioms of multiple choice , 1962 .
[15] Ernst Witt. Beweisstudien zum Satz von M. Zorn. Herrn Erhard. Schmidt zum 75. Geburtstag gewidmet , 1950 .
[16] Über den Satz von Zorn , 1953 .
[17] Rudolf-E. Hoffmann. Projective sober spaces , 1981 .
[18] Bernhard Banaschewski,et al. The fundamental duality of partially ordered sets , 1988 .
[19] A. Jung,et al. Cartesian closed categories of domains , 1989 .
[20] Michael B. Smyth,et al. The Largest Cartesian Closed Category of Domains , 1983, Theor. Comput. Sci..
[21] Nicolas Bourbaki,et al. Sur le théorème de Zorn , 1949 .
[22] Marcel Erné,et al. Compact generation in partially ordered sets , 1987 .
[23] Michael W. Mislove,et al. Local compactness and continuous lattices , 1981 .
[24] John Isbell. Completion of a construction of Johnstone , 1982 .
[25] Garrett Birkhoff,et al. Representations of lattices by sets , 1948 .
[26] G. Markowsky. Chain-complete posets and directed sets with applications , 1976 .
[27] Dan Novak. Generalization of continuous posets , 1982 .
[28] E. Zermelo. Neuer Beweis für die Möglichkeit einer Wohlordnung , 1907 .
[29] James W. Thatcher,et al. A Uniform Approach to Inductive Posets and Inductive Closure , 1977, Theor. Comput. Sci..
[30] M. Stone. The theory of representations for Boolean algebras , 1936 .
[31] J. D. Halperin,et al. The independence of the axiom of choice from the Boolean prime ideal theorem , 1964 .
[32] Isidore Fleischer. Even every Join-extension solves a Universal problem , 1976 .
[33] R. P. Dilworth,et al. A generalized Cantor theorem , 1962 .
[34] E. Zermelo. Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .
[35] Gregory H. Moore. Zermelo’s Axiom of Choice , 1982 .
[36] D. Higgs. Lattices isomorphic to their ideal lattices , 1971 .
[37] Gordon D. Plotkin,et al. The category-theoretic solution of recursive domain equations , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[38] George Gratzer,et al. Universal Algebra , 1979 .
[39] Joseph E. Stoy,et al. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory , 1981 .
[40] Marcel Erné,et al. Scott convergence and scott topology in partially ordered sets II , 1981 .
[41] C. Atherton. Concerning intrinsic topologies on Boolean algebras and certain bicompactly generated lattices , 1970, Glasgow Mathematical Journal.
[42] Bernhard Banaschewski,et al. Hüllensysteme und Erweiterung von Quasi‐Ordnungen , 1956 .
[43] Order-Topological lattices , 1980 .
[44] B. Banaschewski. Prime elements from prime ideals , 1985 .
[45] M. Erné. Bigeneration in complete lattices and principal separation in ordered sets , 1991 .
[46] Carl A. Gunter. Comparing Categories of Domains , 1985, Mathematical Foundations of Programming Semantics.
[47] Marcel Erné,et al. The category of Z-continuous posets , 1983 .
[48] Marcel Erné,et al. Posets isomorphic to their extensions , 1985 .
[49] H. E. Stone,et al. Pseudocompactness and invariance of continuity , 1977 .
[50] H. Herrlich,et al. Category theory at work , 1991 .
[51] Marcel Erné. ORDER EXTENSIONS AS ADJOINT FUNCTORS , 1986 .
[52] G. Grätzer. General Lattice Theory , 1978 .
[53] Rudolf-E. Hoffmann,et al. Sobrification of partially ordered sets , 1979 .
[54] Lynn Arthur Steen,et al. Counterexamples in Topology , 1970 .
[55] Jürgen Schmidt,et al. ber die Rolle der transfiniten Schluweisen in einer allgemeinen Idealtheorie , 1952 .
[56] Smbat Abian,et al. A Theorem on Partially Ordered Sets, With Applications to Fixed Point Theorems , 1961, Canadian Journal of Mathematics.
[57] Orrin Frink,et al. IDEALS IN PARTIALLY ORDERED SETS , 1954 .
[58] Marcel Erné,et al. Standard completions for quasiordered sets , 1983 .
[59] Horst Herrlich,et al. Abstract and concrete categories , 1990 .
[60] J. Mayer-Kalkschmidt,et al. Some theorems in set theory and applications in the ideal theory of partially ordered sets , 1964 .
[61] Rudolf-E. Hoffmann. Topological spaces admitting a "Dual" , 1979 .
[62] S. Papert,et al. Which distributive lattices are lattices of closed sets? , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.
[63] Rudolf-E. Hoffmann,et al. Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactifications , 1981 .
[64] William Graves,et al. The Category of Complete Algebraic Lattices , 1972, J. Comb. Theory, Ser. A.
[65] Un type d'ensembles semi-ordonnés et ses rapports avec une hypothèse de M. A. Weil , 1939 .
[66] Peter T. Johnstone,et al. Scott is not always sober , 1981 .
[67] Jürgen Schmidt,et al. Each join-completion of a partially ordered set in the solution of a universal problem , 1974 .
[68] Andrzej Mostowski. Über die Unabhängigkeit des Wohlordnungssatzes vom Ordnungsprinzip , 1939 .
[69] José Meseguer,et al. Order completion monads , 1983 .
[70] S. Maclane,et al. Categories for the Working Mathematician , 1971 .