Algebraic Ordered Sets and Their Generalizations

We study order-theoretical, algebraic and topological aspects of compact generation in ordered sets. Today, algebraic ordered sets (a natural generalization of algebraic lattices) have their place not only in classical mathematical disciplines like algebra and topology, but also in theoretical computer sciences. Some of the main statements are formulated in the language of category theory, because the manifold facets of algebraic ordered sets become more transparent when expressed in terms of equivalences between suitable categories. In the second part, collections of directed subsets are replaced with arbitrary selections of subsets Z. Many results on compactness remain true for the notion of Z-compactness, and the theory is now general enough to provide a broad spectrum of seemingly unrelated applications. Among other representation theorems, we present a duality theorem encompassing diverse specializations such as the Stone duality, the Lawson duality, and the duality between sober spaces and spatial frames.

[1]  Evelyn Nelson Z-Continuous algebras , 1981 .

[2]  A. Batbedat Des Schemas En Demi-Groupes Commutatifs , 1978 .

[3]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[4]  Rudolf-E. Hoffmann,et al.  Continuous posets and adjoint sequences , 1979 .

[5]  Marcel Erné,et al.  The Dedekind-MacNeille completion as a reflector , 1991 .

[6]  Marcel Erné,et al.  A completion - invariant extension of the concept of continuous lattices , 1981 .

[7]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[8]  M. Erné On the existence of decompositions in lattices , 1983 .

[9]  E. Szpilrajn Sur l'extension de l'ordre partiel , 1930 .

[10]  Jimmie D. Lawson The Versatile Continuous Order , 1987, MFPS.

[11]  Ideal completion and Stone representation of ideal-distributive ordered sets , 1992 .

[12]  R. P. Dilworth,et al.  Algebraic theory of lattices , 1973 .

[13]  G. Grätzer On the Family of Certain Subalgebras of a Universal Algebra , 1965 .

[14]  A. Lévy Axioms of multiple choice , 1962 .

[15]  Ernst Witt Beweisstudien zum Satz von M. Zorn. Herrn Erhard. Schmidt zum 75. Geburtstag gewidmet , 1950 .

[16]  Über den Satz von Zorn , 1953 .

[17]  Rudolf-E. Hoffmann Projective sober spaces , 1981 .

[18]  Bernhard Banaschewski,et al.  The fundamental duality of partially ordered sets , 1988 .

[19]  A. Jung,et al.  Cartesian closed categories of domains , 1989 .

[20]  Michael B. Smyth,et al.  The Largest Cartesian Closed Category of Domains , 1983, Theor. Comput. Sci..

[21]  Nicolas Bourbaki,et al.  Sur le théorème de Zorn , 1949 .

[22]  Marcel Erné,et al.  Compact generation in partially ordered sets , 1987 .

[23]  Michael W. Mislove,et al.  Local compactness and continuous lattices , 1981 .

[24]  John Isbell Completion of a construction of Johnstone , 1982 .

[25]  Garrett Birkhoff,et al.  Representations of lattices by sets , 1948 .

[26]  G. Markowsky Chain-complete posets and directed sets with applications , 1976 .

[27]  Dan Novak Generalization of continuous posets , 1982 .

[28]  E. Zermelo Neuer Beweis für die Möglichkeit einer Wohlordnung , 1907 .

[29]  James W. Thatcher,et al.  A Uniform Approach to Inductive Posets and Inductive Closure , 1977, Theor. Comput. Sci..

[30]  M. Stone The theory of representations for Boolean algebras , 1936 .

[31]  J. D. Halperin,et al.  The independence of the axiom of choice from the Boolean prime ideal theorem , 1964 .

[32]  Isidore Fleischer Even every Join-extension solves a Universal problem , 1976 .

[33]  R. P. Dilworth,et al.  A generalized Cantor theorem , 1962 .

[34]  E. Zermelo Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .

[35]  Gregory H. Moore Zermelo’s Axiom of Choice , 1982 .

[36]  D. Higgs Lattices isomorphic to their ideal lattices , 1971 .

[37]  Gordon D. Plotkin,et al.  The category-theoretic solution of recursive domain equations , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[38]  George Gratzer,et al.  Universal Algebra , 1979 .

[39]  Joseph E. Stoy,et al.  Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory , 1981 .

[40]  Marcel Erné,et al.  Scott convergence and scott topology in partially ordered sets II , 1981 .

[41]  C. Atherton Concerning intrinsic topologies on Boolean algebras and certain bicompactly generated lattices , 1970, Glasgow Mathematical Journal.

[42]  Bernhard Banaschewski,et al.  Hüllensysteme und Erweiterung von Quasi‐Ordnungen , 1956 .

[43]  Order-Topological lattices , 1980 .

[44]  B. Banaschewski Prime elements from prime ideals , 1985 .

[45]  M. Erné Bigeneration in complete lattices and principal separation in ordered sets , 1991 .

[46]  Carl A. Gunter Comparing Categories of Domains , 1985, Mathematical Foundations of Programming Semantics.

[47]  Marcel Erné,et al.  The category of Z-continuous posets , 1983 .

[48]  Marcel Erné,et al.  Posets isomorphic to their extensions , 1985 .

[49]  H. E. Stone,et al.  Pseudocompactness and invariance of continuity , 1977 .

[50]  H. Herrlich,et al.  Category theory at work , 1991 .

[51]  Marcel Erné ORDER EXTENSIONS AS ADJOINT FUNCTORS , 1986 .

[52]  G. Grätzer General Lattice Theory , 1978 .

[53]  Rudolf-E. Hoffmann,et al.  Sobrification of partially ordered sets , 1979 .

[54]  Lynn Arthur Steen,et al.  Counterexamples in Topology , 1970 .

[55]  Jürgen Schmidt,et al.  ber die Rolle der transfiniten Schluweisen in einer allgemeinen Idealtheorie , 1952 .

[56]  Smbat Abian,et al.  A Theorem on Partially Ordered Sets, With Applications to Fixed Point Theorems , 1961, Canadian Journal of Mathematics.

[57]  Orrin Frink,et al.  IDEALS IN PARTIALLY ORDERED SETS , 1954 .

[58]  Marcel Erné,et al.  Standard completions for quasiordered sets , 1983 .

[59]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[60]  J. Mayer-Kalkschmidt,et al.  Some theorems in set theory and applications in the ideal theory of partially ordered sets , 1964 .

[61]  Rudolf-E. Hoffmann Topological spaces admitting a "Dual" , 1979 .

[62]  S. Papert,et al.  Which distributive lattices are lattices of closed sets? , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[63]  Rudolf-E. Hoffmann,et al.  Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactifications , 1981 .

[64]  William Graves,et al.  The Category of Complete Algebraic Lattices , 1972, J. Comb. Theory, Ser. A.

[65]  Un type d'ensembles semi-ordonnés et ses rapports avec une hypothèse de M. A. Weil , 1939 .

[66]  Peter T. Johnstone,et al.  Scott is not always sober , 1981 .

[67]  Jürgen Schmidt,et al.  Each join-completion of a partially ordered set in the solution of a universal problem , 1974 .

[68]  Andrzej Mostowski Über die Unabhängigkeit des Wohlordnungssatzes vom Ordnungsprinzip , 1939 .

[69]  José Meseguer,et al.  Order completion monads , 1983 .

[70]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .