Electron effective masses in an InGaAs quantum well with InAs and GaAs inserts

We have measured and calculated effective masses m* and the band structure of the In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As quantum well on the InP substrate with one or two InAs inserts in the quantum well and GaAs inserts in heterointerface barriers. The effective mass m* was measured by the Shubnikov?de Haas effect. Double symmetric InAs inserts in a quantum well lead to decreasing of m* by about 10%?35% as compared with the uniform In0.53Ga0.47As lattice-matched quantum well.

[1]  Experimental demonstration of In0.53Ga0.47As field effect transistors with scalable nonalloyed source/drain contacts , 2011 .

[2]  Wei-Chou Hsu,et al.  Characteristics of In0.52Al0.48As/InxGa1−xAs HEMT’s with various InxGa1−xAs channels , 2004 .

[3]  E. Klimov,et al.  The effect of spacer-layer growth temperature on mobility in a two-dimensional electron gas in PHEMT structures , 2006 .

[4]  Lateral electronic transport in short-period InAs/GaAs superlattices at the threshold of quantum dot formation , 2003 .

[5]  Daehyun Kim,et al.  30-nm InAs Pseudomorphic HEMTs on an InP Substrate With a Current-Gain Cutoff Frequency of 628 GHz , 2008, IEEE Electron Device Letters.

[6]  T. Enoki,et al.  Improving the mobility of an In0.52Al0.48As/In0.53Ga0.47As inverted modulation‐doped structure by inserting a strained InAs quantum well , 1994 .

[7]  T. Enoki,et al.  Improved InAlAs/InGaAs HEMT characteristics by inserting an InAs layer into the InGaAs channel , 1992, IEEE Electron Device Letters.

[8]  G. Tränkle,et al.  MBE growth of double-sided doped HEMTs with an InAs layer inserted in the channel , 1997 .

[9]  Dae-Hyun Kim,et al.  Scalability of Sub-100 nm InAs HEMTs on InP Substrate for Future Logic Applications , 2010, IEEE Transactions on Electron Devices.

[10]  A. Namajunas,et al.  Electron-phonon scattering engineering , 1997 .

[11]  J. Požela,et al.  Electron mobility and electron scattering by polar optical phonons in heterostructure quantum wells , 2000 .

[12]  T. W. Kim,et al.  Magnetotransport, excitonic transition and electronic structure studies of modulation-doped InxGa1−xAs/InyAl1−yAs asymmetric coupled double quantum wells , 1999 .

[13]  G. Lonzarich,et al.  Towards resolution of the Fermi surface in underdoped high-Tc superconductors , 2011, Reports on progress in physics. Physical Society.

[14]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[15]  B. Pinsard,et al.  High-mobility InGaAs∕InAlAs pseudomorphic heterostructures on InP (001) , 2005 .

[16]  M. Springford Magnetic Oscillations in Metals: Cambridge Monographs on Physics , 1984 .

[17]  K. Yoo,et al.  MAGNETOTRANSPORT, MAGNETO-OPTICAL, AND ELECTRONIC SUBBAND STUDIES IN INXGA1-XAS/INYAL1-XAS MODULATION-DOPED STRAINED DOUBLE QUANTUM WELLS , 1997 .

[18]  Structural and electrical properties of quantum wells with nanoscale InAs inserts in InyAl1 − yAs/InxGa1 − xAs heterostructures on InP substrates , 2011 .

[19]  O. Ambacher,et al.  InP-based heterojunction bipolar transistors with InGaAs/GaAs strained-layer-superlattice , 2011 .

[20]  A. Namajunas,et al.  Electron mobility and subband population tuning by a phonon wall inserted in a semiconductor quantum well , 1997 .

[21]  Jung,et al.  Transition behavior from coupled to uncoupled CdTe/ZnTe asymmetric double quantum wells. , 1995, Physical review. B, Condensed matter.

[22]  Y. Yamashita,et al.  Pseudomorphic In/sub 0.52/Al/sub 0.48/As/In/sub 0.7/Ga/sub 0.3/As HEMTs with an ultrahigh f/sub T/ of 562 GHz , 2002, IEEE Electron Device Letters.

[23]  K. D. Moiseev,et al.  Energy spectrum and quantum magnetotransport in type-II heterojunctions , 2004 .

[24]  Chen,et al.  Excitonic enhancement of the Fermi-edge singularity in a dense two-dimensional electron gas. , 1992, Physical review. B, Condensed matter.

[25]  H. Wei,et al.  Electron effective mass and band‐gap dependence on alloy composition of AlyGaxIn1−y−xAs, lattice matched to InP , 1992 .

[26]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .