Implicit Runge-Kutta Time Integrators for Fluid-Structure Interactions

This paper presents the application of high-order time integrators in the context of monolithic approach simulation of Fluid-Structure Interaction by the Finite Element Method. The numercial method relies on an ALE formulation satisfying the Geometric Conservation Law designed in such a way that the high order accuracy of the Implicit Runge-Kutta time integrator observed on fixed meshes is preserved on deforming meshes. The same integrator is used for both the flow and structural components. We also use coincidents nodes on the fluid structure interface, so that the interface loads, velocities and displacements are evaluated at the same place and at the same times. The formulation is applied to the analysis of the flow induced vibration of a flexible strip mounted on the wake side of a square obstacle placed in a uniform flow. Results compare favorably with previous works. Near optimal time accuracy is observed for 3 and 5 order Implicite Runge-Kutta time integrators (IRK). That’s why, while higher order IRK require more memory than the classical schemes, they are also much faster for a same accuracy.

[1]  Erik Lund,et al.  Shape Sensitivity Analysis of Strongly Coupled Fluid-Structure Interaction Problems , 2000 .

[2]  D. Peric,et al.  A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .

[3]  C. Farhat,et al.  Torsional springs for two-dimensional dynamic unstructured fluid meshes , 1998 .

[4]  Stephane Etienne,et al.  Sensitivity Analysis of Unsteady Fluid-Structure Interaction Problems , 2007 .

[5]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[6]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[7]  D. Dinkler,et al.  A monolithic approach to fluid–structure interaction using space–time finite elements , 2004 .

[8]  Charbel Farhat,et al.  A three-dimensional torsional spring analogy method for unstructured dynamic meshes , 2002 .

[9]  W. K. Anderson,et al.  Al A A-2001-0596 Recent Improvements in Aerodynamic Design Optimization On Unstructured Meshes , 2001 .

[10]  Dominique Pelletier,et al.  Perspective on the geometric conservation law and finite element methods for ALE simulations of incompressible flow , 2009, J. Comput. Phys..

[11]  Wolfgang A. Wall Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen , 1999 .

[12]  E. Lund,et al.  Shape design optimization of stationary fluid-structure interaction problems with large displacements and turbulence , 2003 .

[13]  Interaction Fluide-Structure pour les corps élancés , 2008 .

[14]  Oubay Hassan,et al.  A partitioned coupling approach for dynamic fluid–structure interaction with applications to biological membranes , 2008 .

[15]  Rainald Löhner,et al.  Improved ALE mesh velocities for moving bodies , 1996 .

[16]  M. Heil Stokes flow in an elastic tube—a large-displacement fluid-structure interaction problem , 1998 .

[17]  Rekha Ranjana Rao,et al.  A Newton-Raphson Pseudo-Solid Domain Mapping Technique for Free and Moving Boundary Problems , 1996 .

[18]  Stephane Etienne,et al.  A Monolithic Formulation for Steady-State Fluid-Structure Interaction Problems , 2004 .

[19]  Gabriel Bugeda,et al.  A simple method for automatic update of finite element meshes , 2000 .

[20]  André Garon,et al.  NUMERICAL SOLUTION OF PHASE CHANGE PROBLEMS: AN EULERIAN-LAGRANGIAN APPROACH , 1992 .

[21]  H. Schlichting Boundary Layer Theory , 1955 .

[22]  J. Boyle,et al.  Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches , 2008 .

[23]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[24]  Erik Lund,et al.  Shape design optimization of steady fluid-structure interaction problems with large displacements , 2001 .

[25]  Eugenio Oñate,et al.  A finite element method for fluid-structure interaction with surface waves using a finite calculus formulation , 2001 .