Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay

[1]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[2]  L. Chua,et al.  A UNIFIED FRAMEWORK FOR SYNCHRONIZATION AND CONTROL OF DYNAMICAL SYSTEMS , 1994 .

[3]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .

[4]  Susumu Goto,et al.  LIGAND: chemical database for enzyme reactions , 1998, Bioinform..

[5]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[6]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[7]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[8]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[9]  X. Liao,et al.  Dynamic DNA contacts observed in the NMR structure of winged helix protein-DNA complex. , 1999, Journal of molecular biology.

[10]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[11]  S. Strogatz Exploring complex networks , 2001, Nature.

[12]  Xiao Fan Wang,et al.  Synchronization in scale-free dynamical networks: robustness and fragility , 2001, cond-mat/0105014.

[13]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[14]  Guanrong Chen,et al.  Dynamical Analysis of a New Chaotic Attractor , 2002, Int. J. Bifurc. Chaos.

[15]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[16]  C Masoller,et al.  Delay-induced synchronization phenomena in an array of globally coupled logistic maps. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  G. Rangarajan,et al.  General stability analysis of synchronized dynamics in coupled systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Jun-an Lu,et al.  Parameter identification and backstepping control of uncertain Lü system , 2003 .

[19]  Kwok-wai Chung,et al.  Effects of time delayed position feedback on a van der Pol–Duffing oscillator , 2003 .

[20]  Andrew R. Dalby,et al.  Constructing an enzyme-centric view of metabolism , 2004, Bioinform..

[21]  M. Hasler,et al.  Connection Graph Stability Method for Synchronized Coupled Chaotic Systems , 2004 .

[22]  Jian Xu,et al.  Delay-Induced bifurcations in a nonautonomous System with Delayed Velocity Feedbacks , 2004, Int. J. Bifurc. Chaos.

[23]  Debin Huang Synchronization-based estimation of all parameters of chaotic systems from time series. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Jürgen Jost,et al.  Delays, connection topology, and synchronization of coupled chaotic maps. , 2004, Physical review letters.

[25]  Guanrong Chen,et al.  Chaos synchronization of general complex dynamical networks , 2004 .

[26]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2004, IEEE Trans. Autom. Control..

[27]  Guanrong Chen,et al.  Estimating the bounds for the Lorenz family of chaotic systems , 2005 .

[28]  Aiguo Wu,et al.  Comment on "Estimating model parameters from time series by autosynchronization". , 2005, Physical review letters.

[29]  Ljupco Kocarev,et al.  Estimating topology of networks. , 2006, Physical review letters.

[30]  Debin Huang Adaptive-feedback control algorithm. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Guanrong Chen,et al.  Global synchronization and asymptotic stability of complex dynamical networks , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[32]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[33]  Junan Lu,et al.  Adaptive synchronization of an uncertain complex dynamical network , 2006, IEEE Transactions on Automatic Control.

[34]  Jinde Cao,et al.  Synchronization-based approach for parameters identification in delayed chaotic neural networks , 2007 .

[35]  Jian Xu,et al.  An Efficient Method for Studying Weak Resonant Double Hopf Bifurcation in Nonlinear Systems with Delayed Feedbacks , 2007, SIAM J. Appl. Dyn. Syst..

[36]  Jun-an Lu,et al.  Topology identification of weighted complex dynamical networks , 2007 .