Confluence properties of weak and strong calculi of explicit substitutions

Categorical combinators [Curien 1986/1993; Hardin 1989; Yokouchi 1989] and more recently λ&sgr;-calculus [Abadi 1991; Hardin and Le´vy 1989], have been introduced to provide an explicit treatment of substitutions in the λ-calculus. We reintroduce here the ingredients of these calculi in a self-contained and stepwise way, with a special emphasis on confluence properties. The main new results of the paper with respect to Curien [1986/1993], Hardin [1989], Abadi [1991], and Hardin and Le´vy [1989] are the following: (1) We present a confluent weak calculus of substitutions, where no variable clashes can be feared;(2) We solve a conjecture raised in Abadi [1991]: λ&sgr;-calculus is not confluent (it is confluent on ground terms only). This unfortunate result is “repaired” by presenting a confluent version of λ&sgr;-calculus, named the λEnv-caldulus in Hardin and Le´vy [1989], called here the confluent λ&sgr;-calculus.

[1]  H. Barendregt Pairing without conventional restraints , 1974 .

[2]  de Ng Dick Bruijn,et al.  Lambda calculus with namefree formulas involving symbols that represent reference transforming mappings , 1978 .

[3]  Gérard Boudol,et al.  A lambda-calculus for parallel functions , 1990 .

[4]  Pierre-Louis Curien,et al.  The Categorical Abstract Machine , 1987, Sci. Comput. Program..

[5]  Alejandro Ríos,et al.  Strong Normalization of Substitutions , 1992, MFCS.

[6]  Gérard Boudol,et al.  Lambda-Calculi for (Strict) Parallel Functions , 1994, Inf. Comput..

[7]  de Ng Dick Bruijn Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[8]  V. Breazu-Tannen,et al.  Combining algebra and higher-order types , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[9]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[10]  Jean-Jacques Lévy,et al.  Minimal and optimal computations of recursive programs , 1977, JACM.

[11]  J. Roger Hindley,et al.  Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.

[12]  Gérard P. Huet,et al.  Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980, J. ACM.

[13]  William C. Frederick,et al.  A Combinatory Logic , 1995 .

[14]  C.-H. Luke Ong,et al.  Fully abstract models of the lazy lambda calculus , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[15]  HuetGérard Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980 .

[16]  John Lamping An algorithm for optimal lambda calculus reduction , 1989, POPL '90.

[17]  Samson Abramsky,et al.  The Lazy λ−Calculus , 1990 .

[18]  Gerard Huet,et al.  Conflunt reductions: Abstract properties and applications to term rewriting systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[19]  A. Church The calculi of lambda-conversion , 1941 .

[20]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[21]  Jean-Jacques Lévy,et al.  Minimal and Optimal Computations of Recursive Programs , 1979, J. ACM.

[22]  Thérèse Hardin,et al.  Proof of termination of the rewriting system subst on CCL , 1986, Theor. Comput. Sci..

[23]  Pierre-Louis Curien Categorical Combinators, Sequential Algorithms, and Functional Programming , 1993, Progress in Theoretical Computer Science.

[24]  de Ng Dick Bruijn,et al.  Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[25]  D. A. Turner,et al.  A new implementation technique for applicative languages , 1979, Softw. Pract. Exp..

[26]  Hirofumi Yokouchi Church-Rosser Theorem for a Rewriting System on Categorical Combinators , 1989, Theor. Comput. Sci..

[27]  Thérèse Hardin,et al.  Confluence Results for the Pure Strong Categorical Logic CCL: lambda-Calculi as Subsystems of CCL , 1989, Theor. Comput. Sci..

[28]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[29]  Pierre-Louis Curien,et al.  Categorical Combinators , 1986, Inf. Control..

[30]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[31]  Teruo Hikita,et al.  A Rewriting System for Categorical Combinators with Multiple Arguments , 1990, SIAM J. Comput..

[32]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[33]  Thérèse Hardin,et al.  Theoretical Pearl Yet yet a counterexample for λ+SP , 1994, Journal of functional programming.

[34]  Pierre-Louis Curien,et al.  An Abstract Framework for Environment Machines , 1991, Theor. Comput. Sci..

[35]  Simon L. Peyton Jones,et al.  The Implementation of Functional Programming Languages , 1987 .

[36]  Jean-Jacques Lévy,et al.  Computations in Orthogonal Rewriting Systems, II , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[37]  John Field,et al.  On laziness and optimality in lambda interpreters: tools for specification and analysis , 1989, POPL '90.

[38]  Luc Maranget,et al.  Optimal derivations in weak lambda-calculi and in orthogonal term rewriting systems , 1991, POPL '91.