Confluence properties of weak and strong calculi of explicit substitutions
暂无分享,去创建一个
[1] H. Barendregt. Pairing without conventional restraints , 1974 .
[2] de Ng Dick Bruijn,et al. Lambda calculus with namefree formulas involving symbols that represent reference transforming mappings , 1978 .
[3] Gérard Boudol,et al. A lambda-calculus for parallel functions , 1990 .
[4] Pierre-Louis Curien,et al. The Categorical Abstract Machine , 1987, Sci. Comput. Program..
[5] Alejandro Ríos,et al. Strong Normalization of Substitutions , 1992, MFCS.
[6] Gérard Boudol,et al. Lambda-Calculi for (Strict) Parallel Functions , 1994, Inf. Comput..
[7] de Ng Dick Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .
[8] V. Breazu-Tannen,et al. Combining algebra and higher-order types , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.
[9] D. Knuth,et al. Simple Word Problems in Universal Algebras , 1983 .
[10] Jean-Jacques Lévy,et al. Minimal and optimal computations of recursive programs , 1977, JACM.
[11] J. Roger Hindley,et al. Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.
[12] Gérard P. Huet,et al. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980, J. ACM.
[13] William C. Frederick,et al. A Combinatory Logic , 1995 .
[14] C.-H. Luke Ong,et al. Fully abstract models of the lazy lambda calculus , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[15] HuetGérard. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980 .
[16] John Lamping. An algorithm for optimal lambda calculus reduction , 1989, POPL '90.
[17] Samson Abramsky,et al. The Lazy λ−Calculus , 1990 .
[18] Gerard Huet,et al. Conflunt reductions: Abstract properties and applications to term rewriting systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[19] A. Church. The calculi of lambda-conversion , 1941 .
[20] Jan Willem Klop,et al. Combinatory reduction systems , 1980 .
[21] Jean-Jacques Lévy,et al. Minimal and Optimal Computations of Recursive Programs , 1979, J. ACM.
[22] Thérèse Hardin,et al. Proof of termination of the rewriting system subst on CCL , 1986, Theor. Comput. Sci..
[23] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms, and Functional Programming , 1993, Progress in Theoretical Computer Science.
[24] de Ng Dick Bruijn,et al. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .
[25] D. A. Turner,et al. A new implementation technique for applicative languages , 1979, Softw. Pract. Exp..
[26] Hirofumi Yokouchi. Church-Rosser Theorem for a Rewriting System on Categorical Combinators , 1989, Theor. Comput. Sci..
[27] Thérèse Hardin,et al. Confluence Results for the Pure Strong Categorical Logic CCL: lambda-Calculi as Subsystems of CCL , 1989, Theor. Comput. Sci..
[28] Harold T. Hodes,et al. The | lambda-Calculus. , 1988 .
[29] Pierre-Louis Curien,et al. Categorical Combinators , 1986, Inf. Control..
[30] J. Lambek,et al. Introduction to higher order categorical logic , 1986 .
[31] Teruo Hikita,et al. A Rewriting System for Categorical Combinators with Multiple Arguments , 1990, SIAM J. Comput..
[32] Martín Abadi,et al. Explicit substitutions , 1989, POPL '90.
[33] Thérèse Hardin,et al. Theoretical Pearl Yet yet a counterexample for λ+SP , 1994, Journal of functional programming.
[34] Pierre-Louis Curien,et al. An Abstract Framework for Environment Machines , 1991, Theor. Comput. Sci..
[35] Simon L. Peyton Jones,et al. The Implementation of Functional Programming Languages , 1987 .
[36] Jean-Jacques Lévy,et al. Computations in Orthogonal Rewriting Systems, II , 1991, Computational Logic - Essays in Honor of Alan Robinson.
[37] John Field,et al. On laziness and optimality in lambda interpreters: tools for specification and analysis , 1989, POPL '90.
[38] Luc Maranget,et al. Optimal derivations in weak lambda-calculi and in orthogonal term rewriting systems , 1991, POPL '91.