Pauli graphs when the Hilbert space dimension contains a square: Why the Dedekind psi function?

The Journal of Physics A: Mathematical and Theoretical publishing team would like to apologise to the author of the above paper. Due to an oversight, the article was published with an incorrect publication date. The correct date is: 20 December 2010.

[1]  Metod Saniga,et al.  On the Pauli graphs on N-qudits , 2007, Quantum Inf. Comput..

[2]  A. Vourdas,et al.  FAST TRACK COMMUNICATION: Symplectic transformations and quantum tomography in finite quantum systems , 2010 .

[3]  Extreme values of the Dedekind $\Psi$ function , 2010, 1011.1825.

[4]  H. Rosu,et al.  A Survey of Finite Algebraic Geometrical Structures Underlying Mutually Unbiased Quantum Measurements , 2004, quant-ph/0409081.

[5]  M. Planat ON THE GEOMETRY AND INVARIANTS OF QUBITS, QUARTITS AND OCTITS , 2010, 1005.1997.

[6]  R. Shaw,et al.  Finite geometries and Clifford algebras. II , 1989 .

[7]  M. Planat,et al.  FAST TRACK COMMUNICATION: Clifford groups of quantum gates, BN-pairs and smooth cubic surfaces , 2008, 0811.2109.

[8]  Nanometre-scale nuclear-spin device for quantum information processing , 2006, quant-ph/0605199.

[9]  L. L. Sanchez-Soto,et al.  Geometrical approach to mutually unbiased bases , 2007, 0706.2626.

[10]  The isotropic lines of Z 2 d , 2009 .

[11]  The isotropic lines of Z_{d}^{2} , 2008, 0809.3220.

[12]  F. Verstraete,et al.  The moduli space of three-qutrit states , 2003, quant-ph/0306122.

[13]  J. Tolar,et al.  Feynman's path integral and mutually unbiased bases , 2009, 0904.0886.

[14]  Multiple Qubits as Symplectic Polar Spaces of Order Two , 2006, quant-ph/0612179.

[15]  M. Planat,et al.  Qudits of composite dimension, mutually unbiased bases and projective ring geometry , 2007, 0709.2623.

[16]  A. R. P. Rau,et al.  Mapping two-qubit operators onto projective geometries , 2009 .

[17]  B. Odehnal,et al.  Moebius Pairs of Simplices and Commuting Pauli Operators , 2009, 0905.4648.

[18]  M. Kibler An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group , 2009, 0907.2838.

[19]  Three-Qubit Entangled Embeddings of CPT and Dirac Groups within E8 Weyl Group , 2009, 0906.1063.

[20]  M. Saniga,et al.  Projective ring line of an arbitrary single qudit , 2007, 0710.0941.

[21]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[22]  M. Saniga,et al.  Projective ring line of a specific qudit , 2007, 0708.4333.

[23]  S. Brierley,et al.  Constructing Mutually Unbiased Bases in Dimension Six , 2009, 0901.4051.

[24]  A. Klimov,et al.  Graph states in phase space , 2010, 1007.1751.

[25]  A. Sengupta FINITE GEOMETRIES WITH QUBIT OPERATORS , 2009, 0904.2812.

[26]  M. Planat,et al.  Multi-Line Geometry of Qubit–Qutrit and Higher-Order Pauli Operators , 2007, 0705.2538.

[27]  K. Thas The geometry of generalized Pauli operators of N-qudit Hilbert space, and an application to MUBs , 2009 .

[28]  Metod Saniga,et al.  Black Hole Entropy and Finite Geometry , 2009, 0903.0541.

[29]  Metod Saniga,et al.  Factor-Group-Generated Polar Spaces and (Multi-)Qudits , 2009, 0903.5418.

[30]  Peter J. Cameron,et al.  Projective and Polar Spaces , 1992 .

[31]  The isotropic lines of Z2d , 2009 .