Pauli graphs when the Hilbert space dimension contains a square: Why the Dedekind psi function?
暂无分享,去创建一个
[1] Metod Saniga,et al. On the Pauli graphs on N-qudits , 2007, Quantum Inf. Comput..
[2] A. Vourdas,et al. FAST TRACK COMMUNICATION: Symplectic transformations and quantum tomography in finite quantum systems , 2010 .
[3] Extreme values of the Dedekind $\Psi$ function , 2010, 1011.1825.
[4] H. Rosu,et al. A Survey of Finite Algebraic Geometrical Structures Underlying Mutually Unbiased Quantum Measurements , 2004, quant-ph/0409081.
[5] M. Planat. ON THE GEOMETRY AND INVARIANTS OF QUBITS, QUARTITS AND OCTITS , 2010, 1005.1997.
[6] R. Shaw,et al. Finite geometries and Clifford algebras. II , 1989 .
[7] M. Planat,et al. FAST TRACK COMMUNICATION: Clifford groups of quantum gates, BN-pairs and smooth cubic surfaces , 2008, 0811.2109.
[8] Nanometre-scale nuclear-spin device for quantum information processing , 2006, quant-ph/0605199.
[9] L. L. Sanchez-Soto,et al. Geometrical approach to mutually unbiased bases , 2007, 0706.2626.
[10] The isotropic lines of Z 2 d , 2009 .
[11] The isotropic lines of Z_{d}^{2} , 2008, 0809.3220.
[12] F. Verstraete,et al. The moduli space of three-qutrit states , 2003, quant-ph/0306122.
[13] J. Tolar,et al. Feynman's path integral and mutually unbiased bases , 2009, 0904.0886.
[14] Multiple Qubits as Symplectic Polar Spaces of Order Two , 2006, quant-ph/0612179.
[15] M. Planat,et al. Qudits of composite dimension, mutually unbiased bases and projective ring geometry , 2007, 0709.2623.
[16] A. R. P. Rau,et al. Mapping two-qubit operators onto projective geometries , 2009 .
[17] B. Odehnal,et al. Moebius Pairs of Simplices and Commuting Pauli Operators , 2009, 0905.4648.
[18] M. Kibler. An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group , 2009, 0907.2838.
[19] Three-Qubit Entangled Embeddings of CPT and Dirac Groups within E8 Weyl Group , 2009, 0906.1063.
[20] M. Saniga,et al. Projective ring line of an arbitrary single qudit , 2007, 0710.0941.
[21] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[22] M. Saniga,et al. Projective ring line of a specific qudit , 2007, 0708.4333.
[23] S. Brierley,et al. Constructing Mutually Unbiased Bases in Dimension Six , 2009, 0901.4051.
[24] A. Klimov,et al. Graph states in phase space , 2010, 1007.1751.
[25] A. Sengupta. FINITE GEOMETRIES WITH QUBIT OPERATORS , 2009, 0904.2812.
[26] M. Planat,et al. Multi-Line Geometry of Qubit–Qutrit and Higher-Order Pauli Operators , 2007, 0705.2538.
[27] K. Thas. The geometry of generalized Pauli operators of N-qudit Hilbert space, and an application to MUBs , 2009 .
[28] Metod Saniga,et al. Black Hole Entropy and Finite Geometry , 2009, 0903.0541.
[29] Metod Saniga,et al. Factor-Group-Generated Polar Spaces and (Multi-)Qudits , 2009, 0903.5418.
[30] Peter J. Cameron,et al. Projective and Polar Spaces , 1992 .
[31] The isotropic lines of Z2d , 2009 .