Unveiling the dynamic capacitive storage mechanism of Co3O4 @NiCo2O4 hybrid nanoelectrodes for supercapacitor applications

Abstract We report a simple and cost-effective approach to the synthesis of hierarchical mesporous Co 3 O 4 @NiCo 2 O 4 nanoforests on Ni foam for supercapacitor (SC) electrode applications by a coupled one-step solution and annealing process. The synthesized electrode exhibits capacitive activation during charge-discharge cycling (from 0.73 F/cm 2 of the pristine state to the peak value of 1.12 F/cm 2 after 2000 cycles with only 1.8% loss compared to the peak capacitance after another 2000 cycles). We attribute such dynamic capacitive activation to (1) enlarged electroactive surface area through the formation of Co 3 O 4 @NiCo 2 O 4 core-shell structure and (2) enhanced electrical conductivity by forming oxygen vacancies and hydroxyl groups during charge-discharge cycling. Our findings provide a scientific explanation for the capacitive activation in cobalt oxide-binary nickel cobaltite compounds, and a new design guideline for the development of capacitive activation enabled, high performance transitional oxide electrodes.

[1]  Jaephil Cho,et al.  High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries , 2011 .

[2]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[3]  Jiaoyang Li,et al.  Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors , 2012 .

[4]  Jiang,et al.  EELS analysis of cation valence states and oxygen vacancies in magnetic oxides , 2000, Micron.

[5]  D. He,et al.  Preparation of nano-networks of MnO2 shell/Ni current collector core for high-performance supercapacitor electrodes , 2012 .

[6]  H. Alshareef,et al.  Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. , 2012, Nano letters.

[7]  Xiaofen Li,et al.  Progress of electrochemical capacitor electrode materials: A review , 2009 .

[8]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[9]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[10]  Chunzhong Li,et al.  Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. , 2012, Chemical communications.

[11]  W. Li,et al.  Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. , 2012, Chemical communications.

[12]  Qinqin Xiong,et al.  Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials. , 2013, ACS applied materials & interfaces.

[13]  C. Chung,et al.  A facile method to improve the high rate capability of Co3O4 nanowire array electrodes , 2010 .

[14]  Zhongai Hu,et al.  Design and synthesis of NiCo2O4–reduced graphene oxide composites for high performance supercapacitors , 2011 .

[15]  Chi-Chang Hu,et al.  Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors , 2013 .

[16]  N. Browning,et al.  Characterization of oxygen-deficient SrCoO3−δ by electron energy-loss spectroscopy and Z-contrast imaging , 2000 .

[17]  Chi-Chang Hu,et al.  Microwave-assisted hydrothermal annealing of binary Ni–Co oxy-hydroxides for asymmetric supercapacitors , 2013 .

[18]  Hua Chen,et al.  Electron-pinned defect-dipoles for high-performance colossal permittivity materials. , 2013, Nature materials.

[19]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[20]  Yu-Kuei Hsu,et al.  Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode , 2011 .

[21]  Ke‐long Huang,et al.  Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance , 2011 .

[22]  Huanlei Wang,et al.  Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. , 2011, Small.

[23]  R. Ding,et al.  A facile and cost-effective synthesis of mesoporous NiCo2O4 nanoparticles and their capacitive behavior in electrochemical capacitors , 2012, Journal of Solid State Electrochemistry.

[24]  Yehui Zhang,et al.  Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor , 2013 .

[25]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  Xiuli Wang,et al.  Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance , 2011 .

[28]  F. Kang,et al.  Coaxial carbon nanofibers/MnO2 nanocomposites as freestanding electrodes for high-performance electrochemical capacitors , 2011 .

[29]  Lifang Jiao,et al.  Novel three-dimensional NiCo2O4 hierarchitectures: solvothermal synthesis and electrochemical properties , 2014 .

[30]  B. Fultz,et al.  White lines and d-band occupancy for the 3d transition-metal oxides and lithium transition-metal oxides , 2004 .

[31]  J. Tu,et al.  Freestanding Co3O4 nanowire array for high performance supercapacitors , 2012 .

[32]  Hiroyuki Nishide,et al.  Toward Flexible Batteries , 2008, Science.

[33]  B. Dunn,et al.  High‐Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites , 2011, Advanced materials.

[34]  Genqiang Zhang,et al.  Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. , 2013, Chemical communications.

[35]  Xiuli Wang,et al.  High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. , 2012, ACS nano.

[36]  M. Armand,et al.  Building better batteries , 2008, Nature.

[37]  Zaoli Zhang Surface effects in the energy loss near edge structure of different cobalt oxides. , 2007, Ultramicroscopy.

[38]  A. J. Frank,et al.  Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. , 2010, Nano letters.

[39]  Q. Li,et al.  Three-dimensional Co₃O₄@NiMoO₄ core/shell nanowire arrays on Ni foam for electrochemical energy storage. , 2014, ACS applied materials & interfaces.

[40]  Jian Jiang,et al.  Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application , 2011 .

[41]  B. Liu,et al.  Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells , 2012 .

[42]  G. Sawatzky,et al.  Oxygen 1s x-ray-absorption edges of transition-metal oxides. , 1989, Physical review. B, Condensed matter.

[43]  Q. Cao,et al.  Hierarchically porous Co3O4 film prepared by hydrothermal synthesis method based on colloidal crystal template for supercapacitor application , 2012 .