Copositive matrices and Simpson's paradox
暂无分享,去创建一个
[1] Y. Mittal. Homogeneity of Subpopulations and Simpson's Paradox , 1991 .
[2] C. Blyth. On Simpson's Paradox and the Sure-Thing Principle , 1972 .
[3] H. Väliaho,et al. Criteria for copositive matrices , 1986 .
[4] A. Ostrowski,et al. A QUANTITATIVE FORMULATION OF SYLVESTER'S LAW OF INERTIA, II. , 1959, Proceedings of the National Academy of Sciences of the United States of America.
[5] K. P. Hadeler,et al. On copositive matrices , 1983 .
[6] J. Dancis. A quantitative formulation of Sylvester's law of inertia. III , 1986 .
[7] I. Good,et al. The Amalgamation and Geometry of Two-by-Two Contingency Tables , 1987 .
[8] L. Joseph,et al. Bayesian Statistics: An Introduction , 1989 .
[9] Richard W. Cottle,et al. On classes of copositive matrices , 1970 .
[10] E. H. Simpson,et al. The Interpretation of Interaction in Contingency Tables , 1951 .
[11] J. Zidek. Maximal Simpson-disaggregations of 2×2 tables , 1984 .
[12] G. Yule. NOTES ON THE THEORY OF ASSOCIATION OF ATTRIBUTES IN STATISTICS , 1903 .
[13] M. L. Samuels. Simpson's Paradox and Related Phenomena , 1993 .
[14] D. Messick,et al. A reversal paradox. , 1981 .
[15] Jr. Hall. Combinatorial theory (2nd ed.) , 1998 .