Ridge regression in two‐parameter solution

[1]  S. Lipovetsky,et al.  Enhance-synergism and suppression effects in multiple regression , 2004 .

[2]  S. Lipovetsky,et al.  Dual- and triple-mode matrix approximation and regression modelling , 2003 .

[3]  Reginaldo J. Santos,et al.  A Cheaper Way to Compute Generalized Cross-Validation as a Stopping Rule for Linear Stationary Iterative Methods , 2003 .

[4]  Douglas M. Hawkins,et al.  A faster algorithm for ridge regression of reduced rank data , 2002 .

[5]  Stan Lipovetsky,et al.  Multiobjective regression modifications for collinearity , 2001, Comput. Oper. Res..

[6]  S. Lipovetsky,et al.  Analysis of regression in game theory approach , 2001 .

[7]  Robin J. Chapman,et al.  All Solutions in the Unit Cube: 10764 , 2000, Am. Math. Mon..

[8]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[9]  Charlotte H. Mason,et al.  Collinearity, power, and interpretation of multiple regression analysis. , 1991 .

[10]  A. Ullah,et al.  Recent Advances in Regression Methods. , 1983 .

[11]  G. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[12]  G. A. Garreau Mathematical Programming and Control Theory , 1979, The Mathematical Gazette.

[13]  G. C. McDonald,et al.  A Monte Carlo Evaluation of Some Ridge-Type Estimators , 1975 .

[14]  Andrew Ehrenberg,et al.  How Good Is Best , 1982 .

[15]  A. E. Hoerl,et al.  Ridge regression:some simulations , 1975 .