Ridge regression in two‐parameter solution
暂无分享,去创建一个
[1] S. Lipovetsky,et al. Enhance-synergism and suppression effects in multiple regression , 2004 .
[2] S. Lipovetsky,et al. Dual- and triple-mode matrix approximation and regression modelling , 2003 .
[3] Reginaldo J. Santos,et al. A Cheaper Way to Compute Generalized Cross-Validation as a Stopping Rule for Linear Stationary Iterative Methods , 2003 .
[4] Douglas M. Hawkins,et al. A faster algorithm for ridge regression of reduced rank data , 2002 .
[5] Stan Lipovetsky,et al. Multiobjective regression modifications for collinearity , 2001, Comput. Oper. Res..
[6] S. Lipovetsky,et al. Analysis of regression in game theory approach , 2001 .
[7] Robin J. Chapman,et al. All Solutions in the Unit Cube: 10764 , 2000, Am. Math. Mon..
[8] Arthur E. Hoerl,et al. Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.
[9] Charlotte H. Mason,et al. Collinearity, power, and interpretation of multiple regression analysis. , 1991 .
[10] A. Ullah,et al. Recent Advances in Regression Methods. , 1983 .
[11] G. Golub,et al. Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.
[12] G. A. Garreau. Mathematical Programming and Control Theory , 1979, The Mathematical Gazette.
[13] G. C. McDonald,et al. A Monte Carlo Evaluation of Some Ridge-Type Estimators , 1975 .
[14] Andrew Ehrenberg,et al. How Good Is Best , 1982 .
[15] A. E. Hoerl,et al. Ridge regression:some simulations , 1975 .