ACCESS-OM2: A Global Ocean-Sea Ice Model at Three Resolutions

Abstract. We introduce a new version of the ocean-sea ice implementation of the Australian Community Climate and Earth System Simulator, ACCESS-OM2. The model has been developed with the aim of being aligned as closely as possible with the fully coupled (atmosphere-land-ocean-sea ice) ACCESS-CM2. Importantly, the model is available at three different horizontal resolutions: a coarse resolution (nominally 1° horizontal grid spacing), an eddy-permitting resolution (nominally 0.25°) and an eddy-rich resolution (0.1° with 75 vertical levels), where the eddy-rich model is designed to be incorporated into the Bluelink operational ocean prediction and reanalysis system. The different resolutions have been developed simultaneously, both to allow testing at lower resolutions and to permit comparison across resolutions. In this manuscript, the model is introduced and the individual components are documented. The model performance is evaluated across the three different resolutions, highlighting the relative advantages and disadvantages of running ocean-sea ice models at higher resolution. We find that higher resolution is an advantage in resolving flow through small straits, the structure of western boundary currents and the abyssal overturning cell, but that there is scope for improvements in sub-grid scale parameterisations at the highest resolution.

[1]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[2]  William H. Lipscomb,et al.  Ridging, strength, and stability in high-resolution sea ice models , 2007 .

[3]  S. Kern,et al.  Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations , 2015 .

[4]  C. Wunsch,et al.  Large-Scale Ocean Heat and Freshwater Transports during the World Ocean Circulation Experiment , 2003 .

[5]  Petra Heil,et al.  Modeling Linear Kinematic Features in Sea Ice , 2005 .

[6]  Sergey Danilov,et al.  On Solving the Momentum Equations of Dynamic Sea , 2011 .

[7]  T. McDougall,et al.  The Temporal-Residual-Mean Velocity. Part II: Isopycnal Interpretation and the Tracer and Momentum Equations , 2001 .

[8]  D. Chambers,et al.  Recent trends in the Southern Ocean eddy field , 2015 .

[9]  K. Ridgway,et al.  Mesoscale structure of the mean East Australian Current System and its relationship with topography , 2003 .

[10]  J. Sprintall,et al.  Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006 , 2009 .

[11]  Rüdiger Gerdes,et al.  Formulation of an ocean model for global climate simulations , 2005 .

[12]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[13]  W. Feng,et al.  Assessment of sea level variability derived by EOF reconstruction , 2018 .

[14]  W. Hobbs,et al.  An Energy Conservation Analysis of Ocean Drift in the CMIP5 Global Coupled Models , 2016 .

[15]  K. Speer,et al.  Closure of the meridional overturning circulation through Southern Ocean upwelling , 2012 .

[16]  Stephen M. Griffies,et al.  Biharmonic Friction with a Smagorinsky-Like Viscosity for Use in Large-Scale Eddy-Permitting Ocean Models , 2000 .

[17]  S. Speich,et al.  Routes of Agulhas rings in the southeastern Cape Basin , 2010 .

[18]  A. Mariano,et al.  An improved near-surface velocity climatology for the global ocean from drifter observations , 2017 .

[19]  Eric P. Chassignet,et al.  Gulf Stream Separation in Numerical Ocean Models , 2013 .

[20]  S. Rintoul,et al.  The Southern Ocean Limb of the Global Deep Overturning Circulation , 2001 .

[21]  A. Rosati,et al.  Sensitivity of the North Atlantic Ocean Circulation to an abrupt change in the Nordic Sea overflow in a high resolution global coupled climate model , 2011 .

[22]  S. Marsland,et al.  Australian Climate Ocean Model (AusCOM) Users Guide , 2010 .

[23]  Peter R. Oke,et al.  Evaluation of a near-global eddy-resolving ocean model , 2012 .

[24]  Eric P. Chassignet,et al.  Impact of wind forcing, bottom topography, and inertia on midlatitude jet separation in a quasigeostrophic model , 1997 .

[25]  J. McWilliams,et al.  Effects of the Submesoscale on the Potential Vorticity Budget of Ocean Mode Waters , 2017, Journal of Physical Oceanography.

[26]  L. Talley Closure of the Global Overturning Circulation Through the Indian, Pacific, and Southern Oceans: Schematics and Transports , 2013 .

[27]  W. Hibler A Dynamic Thermodynamic Sea Ice Model , 1979 .

[28]  K. Speer,et al.  Global Ocean Meridional Overturning , 2007 .

[29]  S. Bony,et al.  Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[30]  R. Colony,et al.  The thickness distribution of sea ice , 1975 .

[31]  D. R. Watts,et al.  Mean Antarctic Circumpolar Current transport measured in Drake Passage , 2016 .

[32]  G. Danabasoglu,et al.  JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do) , 2018, Ocean Modelling.

[33]  W. Dewar,et al.  On the dynamics of the Zapiola Anticyclone , 1999 .

[34]  M. Ollitrault,et al.  A direct determination of the World Ocean barotropic circulation , 2016 .

[35]  Bengamin I. Moat,et al.  Measuring the Atlantic Meridional Overturning Circulation at 26°N , 2015 .

[36]  Dimitris Menemenlis,et al.  Scaling Properties of Arctic Sea Ice Deformation in a High‐Resolution Viscous‐Plastic Sea Ice Model and in Satellite Observations , 2018, Journal of geophysical research. Oceans.

[37]  M. H. Savoie,et al.  Verification of a new NOAA/NSIDC passive microwave sea-ice concentration climate record , 2014 .

[38]  Dongxiao Zhang,et al.  The Kuroshio East of Taiwan: Moored Transport Observations from the WOCE PCM-1 Array , 2001 .

[39]  T. Rossby The North Atlantic Current and surrounding waters: At the crossroads , 1996 .

[40]  Alistair Adcroft,et al.  Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models , 2004 .

[41]  B. Samuels,et al.  An assessment of global and regional sea level for years 1993-2007 in a suite of interannual CORE-II simulations , 2014 .

[42]  B. Samuels,et al.  An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations , 2015 .

[43]  Ross J. Murray,et al.  Explicit Generation of Orthogonal Grids for Ocean Models , 1996 .

[44]  Craig M. Lee,et al.  An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: Sea ice and solid freshwater , 2016 .

[45]  Julienne Stroeve,et al.  Changing state of Arctic sea ice across all seasons , 2018, Environmental Research Letters.

[46]  G. Vecchi,et al.  Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model , 2012 .

[47]  Colm Sweeney,et al.  Impacts of Shortwave Penetration Depth on Large-Scale Ocean Circulation and Heat Transport , 2005 .

[48]  B. Fox‐Kemper,et al.  Parameterization of Mixed Layer Eddies. Part I. Theory and Diagnosis , 2008 .

[49]  G. Meehl,et al.  Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes , 2016, Surveys in Geophysics.

[50]  Sheri A. Mickelson,et al.  Improved parallel performance of the CICE model in CESM1 , 2015, Int. J. High Perform. Comput. Appl..

[51]  D. Chambers Using kinetic energy measurements from altimetry to detect shifts in the positions of fronts in the Southern Ocean , 2017 .

[52]  S. Levitus,et al.  World ocean atlas 2013. Volume 1, Temperature , 2002 .

[53]  M. R. van den Broeke,et al.  Calving fluxes and basal melt rates of Antarctic ice shelves , 2013, Nature.

[54]  Timothy P. Boyer,et al.  World ocean atlas 2013. Volume 2, Salinity , 2002 .

[55]  S. Xie,et al.  Structure and Mechanisms of South Indian Ocean Climate Variability , 2002 .

[56]  R. Ingram,et al.  Currents and turbulent fluxes under the first-year sea ice in Resolute Passage, Northwest Territories, Canada , 1997 .

[57]  J. Turner,et al.  Solve Antarctica’s sea-ice puzzle , 2017, Nature.

[58]  C. Talandier,et al.  DRAKKAR: developing high resolution ocean components for European Earth system models , 2014 .

[59]  Marilyn N. Raphael,et al.  Atmospheric influences on the anomalous 2016 Antarctic sea ice decay , 2017 .

[60]  T. Vihma,et al.  The effect of alternative real-time wind forcing on Southern Ocean sea ice simulations , 2011 .

[61]  John K. Dukowicz,et al.  Incremental Remapping as a Transport/Advection Algorithm , 2000 .

[62]  W. Dewar Topography and barotropic transport control by bottom friction , 1998 .

[63]  T. Bracegirdle,et al.  Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response , 2013 .

[64]  Gregory C. Johnson,et al.  Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s , 2002 .

[65]  E. Hunke,et al.  An Elastic–Viscous–Plastic Model for Sea Ice Dynamics , 1996 .

[66]  M. H. Savoie,et al.  A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring , 2013 .

[67]  L. Fu Pathways of eddies in the South Atlantic Ocean revealed from satellite altimeter observations , 2006 .

[68]  Frank O. Bryan,et al.  Equatorial Circulation of a Global Ocean Climate Model with Anisotropic Horizontal Viscosity , 2001 .

[69]  Stephen G. Yeager,et al.  The global climatology of an interannually varying air–sea flux data set , 2009 .

[70]  M. Redi Oceanic Isopycnal Mixing by Coordinate Rotation , 1982 .

[71]  D. Stevens,et al.  Increasing vertical mixing to reduce Southern Ocean deep convection in NEMO3.4 , 2015 .

[72]  Martin Schmidt A benchmark for the parallel code used in FMS and MOM-4 , 2007 .

[73]  William H. Lipscomb,et al.  Modeling Sea Ice Transport Using Incremental Remapping , 2004 .

[74]  Stephen M. Griffies,et al.  The Gent–McWilliams Skew Flux , 1998 .

[75]  Stephen G. Yeager,et al.  Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies , 2004 .

[76]  E. Hunke,et al.  Two modes of sea‐ice gravity drainage: A parameterization for large‐scale modeling , 2013 .

[77]  Stephen Pond,et al.  A Numerical Model of the Circulation in Knight Inlet, British Columbia, Canada , 1995 .

[78]  J. Beckers,et al.  NOTES AND CORRESPONDENCE Another Reason Why Simple Discretizations of Rotated Diffusion Operators Cause Problems in Ocean Models: Comments on ''Isoneutral Diffusion in a z-Coordinate Ocean Model'' , 1998 .

[79]  Mark Buehner,et al.  The Regional Ice Prediction System (RIPS): verification of forecast sea ice concentration , 2016 .

[80]  Yuanlong Li,et al.  Decadal Sea Level Variations in the Indian Ocean Investigated with HYCOM: Roles of Climate Modes, Ocean Internal Variability, and Stochastic Wind Forcing* , 2015 .

[81]  A. Watson,et al.  Bio‐optical feedbacks among phytoplankton, upper ocean physics and sea‐ice in a global model , 2005 .

[82]  Gilles Larnicol,et al.  New CNES‐CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements , 2011 .

[83]  T. Bischoff,et al.  A Multibasin Residual-Mean Model for the Global Overturning Circulation , 2016 .

[84]  K. Trenberth,et al.  Estimates of Meridional Atmosphere and Ocean Heat Transports , 2001 .

[85]  Amir R. Khoei,et al.  The superconvergence patch recovery technique and data transfer operators in 3D plasticity problems , 2007 .

[86]  B. Samuels,et al.  An assessment of Southern Ocean water masses and sea ice during 1988–2007 in a suite of interannual CORE-II simulations , 2015 .

[87]  Thorsten Markus,et al.  Changes in Arctic melt season and implications for sea ice loss , 2014 .

[88]  Swadhin K. Behera,et al.  Paramount Impact of the Indian Ocean Dipole on the East African Short Rains: A CGCM Study , 2005 .

[89]  Anthony Rosati,et al.  Barotropic tidal mixing effects in a coupled climate model: Oceanic conditions in the Northern Atlantic , 2006 .

[90]  Robert Hallberg,et al.  Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects , 2013 .

[91]  Molly O. Baringer,et al.  Florida Current transport variability: An analysis of annual and longer-period signals , 2010 .

[92]  Elizabeth C. Hunke,et al.  Thickness sensitivities in the CICE sea ice model , 2010 .

[93]  D. A. Rothrock,et al.  Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates , 2003 .

[94]  Steven J. Phipps,et al.  Climate drift in the CMIP3 models , 2012 .

[95]  Matthias Aechtner,et al.  Conservative interpolation between general spherical meshes , 2015 .

[96]  B. Sloyan,et al.  The East Australian Current and Property Transport at 27°S from 2012 to 2013 , 2016 .

[97]  Hajo Eicken,et al.  Thermal conductivity of landfast Antarctic and Arctic sea ice , 2007 .

[98]  Swadhin K. Behera,et al.  The Role of the Western Arabian Sea Upwelling in Indian Monsoon Rainfall Variability , 2008 .

[99]  Markus Jochum,et al.  Impact of latitudinal variations in vertical diffusivity on climate simulations , 2009 .

[100]  S. Griffies,et al.  Surface winds from atmospheric reanalysis lead to contrasting oceanic forcing and coastal upwelling patterns , 2019, Ocean Modelling.

[101]  Rainer Feistel,et al.  Algorithms for Density, Potential Temperature, Conservative Temperature, and the Freezing Temperature of Seawater , 2006 .

[102]  William H. Lipscomb,et al.  An energy-conserving thermodynamic model of sea ice , 1999 .

[103]  D. Stevens,et al.  Changes in Global Ocean Bottom Properties and Volume Transports in CMIP5 Models under Climate Change Scenarios , 2015 .

[104]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[105]  Ron Kwok,et al.  Wind-driven trends in Antarctic sea-ice drift , 2012 .

[106]  E. Kowalczyk,et al.  The ACCESS coupled model: description, control climate and evaluation , 2013 .

[107]  Masaki Kawabe,et al.  Variations of Current Path, Velocity, and Volume Transport of the Kuroshio in Relation with the Large Meander , 1995 .

[108]  Takaaki Yokoi,et al.  Seasonal Variation of the Seychelles Dome , 2008 .

[109]  Sergey Danilov,et al.  A comparison of viscous-plastic sea ice solvers with and without replacement pressure , 2017 .

[110]  T. Vihma,et al.  The role of wind forcing from operational analyses for the model representation of Antarctic coastal sea ice , 2015 .

[111]  Frank O. Bryan,et al.  Coordinated Ocean-ice Reference Experiments (COREs) , 2009 .

[112]  John K. Dukowicz,et al.  The Elastic Viscous Plastic Sea Ice Dynamics Model in General Orthogonal Curvilinear Coordinates on a Sphere—Incorporation of Metric Terms , 2002 .

[113]  David M. Holland,et al.  A comparison of the Jacobian-free Newton-Krylov method and the EVP model for solving the sea ice momentum equation with a viscous-plastic formulation: A serial algorithm study , 2012, J. Comput. Phys..

[114]  H. Huynh,et al.  Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .

[115]  Anand Gnanadesikan,et al.  Transient Response in a Z-Level Ocean Model That Resolves Topography with Partial Cells , 1998 .

[116]  Patrick Heimbach,et al.  OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project , 2016 .

[117]  Elizabeth C. Hunke,et al.  Viscous–Plastic Sea Ice Dynamics with the EVP Model: Linearization Issues , 2001 .

[118]  S. Griffies,et al.  ACCESS-OM: the Ocean and Sea ice Core of the ACCESS Coupled Model , 2013 .

[119]  Arun Kumar,et al.  An assessment of air–sea heat fluxes from ocean and coupled reanalyses , 2017, Climate Dynamics.

[120]  Roger Lukas,et al.  Seasonal to interannual modes of sea level variability in the western Pacific and eastern Indian oceans , 1999 .

[121]  A. Adcroft,et al.  Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model , 1997 .

[122]  B. Samuels,et al.  North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations , 2016 .

[123]  A. Weaver,et al.  Tidally driven mixing in a numerical model of the ocean general circulation , 2003 .

[124]  Sergey Danilov,et al.  On the convergence of the modified elastic-viscous-plastic method for solving the sea ice momentum equation , 2015, J. Comput. Phys..

[125]  M. England,et al.  The Contribution of Indian Ocean Sea Surface Temperature Anomalies on Australian Summer Rainfall during El Niño Events , 2011 .

[126]  Stephen M. Griffies,et al.  Vertical resolution of baroclinic modes in global ocean models , 2017 .

[127]  Jonathan V. Durgadoo,et al.  The Marine Ecosystem of the Sub-Antarctic, Prince Edward Islands , 2012 .