Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients

In this paper we analyze the numerical approximation of diffusion problems over polyhedral domains in $$\mathbb {R}^d$$Rd ($$d = 1, 2,3$$d=1,2,3), with diffusion coefficient $$a({\varvec{x}},\omega )$$a(x,ω) given as a lognormal random field, i.e., $$a({\varvec{x}},\omega ) = \exp (Z({\varvec{x}},\omega ))$$a(x,ω)=exp(Z(x,ω)) where $${\varvec{x}}$$x is the spatial variable and $$Z({\varvec{x}}, \cdot )$$Z(x,·) is a Gaussian random field. The analysis presents particular challenges since the corresponding bilinear form is not uniformly bounded away from $$0$$0 or $$\infty $$∞ over all possible realizations of $$a$$a. Focusing on the problem of computing the expected value of linear functionals of the solution of the diffusion problem, we give a rigorous error analysis for methods constructed from (1) standard continuous and piecewise linear finite element approximation in physical space; (2) truncated Karhunen–Loève expansion for computing realizations of $$a$$a (leading to a possibly high-dimensional parametrized deterministic diffusion problem); and (3) lattice-based quasi-Monte Carlo (QMC) quadrature rules for computing integrals over parameter space which define the expected values. The paper contains novel error analysis which accounts for the effect of all three types of approximation. The QMC analysis is based on a recent result on randomly shifted lattice rules for high-dimensional integrals over the unbounded domain of Euclidean space, which shows that (under suitable conditions) the quadrature error decays with $$\mathcal {O}(n^{-1+\delta })$$O(n-1+δ) with respect to the number of quadrature points $$n$$n, where $$\delta >0$$δ>0 is arbitrarily small and where the implied constant in the asymptotic error bound is independent of the dimension of the domain of integration.

[1]  James A. Nichols,et al.  Fast CBC construction of randomly shifted lattice rules achieving O(n-1+δ) convergence for unbounded integrands over R5 in weighted spaces with POD weights , 2014, J. Complex..

[2]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[3]  R. L. Naff,et al.  High‐resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 1. Methodology and flow results , 1998 .

[4]  Grzegorz W. Wasilkowski,et al.  Randomly shifted lattice rules for unbounded integrands , 2006, J. Complex..

[5]  Frances Y. Kuo,et al.  Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..

[6]  Catherine E. Powell,et al.  Preface to "An Introduction to Computational Stochastic PDEs" , 2014 .

[7]  I. Sloan,et al.  QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND , 2011, The ANZIAM Journal.

[8]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[9]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[10]  H. Widom Asymptotic behavior of the eigenvalues of certain integral equations , 1963 .

[11]  I. H. SLOAN,et al.  Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..

[12]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[13]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[14]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[15]  Harald Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2002 , 2004 .

[16]  R. L. Naff,et al.  High‐resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 2. Transport results , 1998 .

[17]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[18]  Dirk Nuyens,et al.  Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..

[19]  Christoph Schwab,et al.  N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs , 2014 .

[20]  M. Lemaire,et al.  Stochastic Finite Elements , 2010 .

[21]  Grzegorz W. Wasilkowski,et al.  Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands , 2010, J. Complex..

[22]  F. Pillichshammer,et al.  Discrepancy Theory and Quasi-Monte Carlo Integration , 2014 .

[23]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[24]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[25]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[26]  Henryk Wozniakowski,et al.  Finite-order weights imply tractability of multivariate integration , 2004, J. Complex..

[27]  Grzegorz W. Wasilkowski,et al.  Complexity of Weighted Approximation over R , 2000 .

[28]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[29]  Dirk Nuyens,et al.  Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..

[30]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[31]  Josef Dick,et al.  The construction of good extensible rank-1 lattices , 2008, Math. Comput..

[32]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .

[33]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[34]  A. Debussche,et al.  Weak truncation error estimates for elliptic PDEs with lognormal coefficients , 2013 .

[35]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[36]  H. Widom Asymptotic behavior of the eigenvalues of certain integral equations. II , 1964 .

[37]  Fred J. Hickernell,et al.  On Tractability of Weighted Integration for Certain Banach Spaces of Functions , 2004 .

[38]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[39]  Grzegorz W. Wasilkowski,et al.  Tractability of Approximation and Integration for Weighted Tensor Product Problems over Unbounded Domains , 2002 .

[40]  C. J. Gittelson STOCHASTIC GALERKIN DISCRETIZATION OF THE LOG-NORMAL ISOTROPIC DIFFUSION PROBLEM , 2010 .

[41]  Josef Dick On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..

[42]  Fred J. Hickernell,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .

[43]  Frances Y. Kuo,et al.  Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..

[44]  Frances Y. Kuo,et al.  Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..