Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
暂无分享,去创建一个
James A. Nichols | Frances Y. Kuo | Ian H. Sloan | Ivan G. Graham | Robert Scheichl | Christoph Schwab | I. Sloan | I. Graham | Robert Scheichl | C. Schwab | J. A. Nichols | F. Kuo
[1] James A. Nichols,et al. Fast CBC construction of randomly shifted lattice rules achieving O(n-1+δ) convergence for unbounded integrands over R5 in weighted spaces with POD weights , 2014, J. Complex..
[2] Frances Y. Kuo,et al. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.
[3] R. L. Naff,et al. High‐resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 1. Methodology and flow results , 1998 .
[4] Grzegorz W. Wasilkowski,et al. Randomly shifted lattice rules for unbounded integrands , 2006, J. Complex..
[5] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..
[6] Catherine E. Powell,et al. Preface to "An Introduction to Computational Stochastic PDEs" , 2014 .
[7] I. Sloan,et al. QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND , 2011, The ANZIAM Journal.
[8] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[9] Elisabeth Ullmann,et al. Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.
[10] H. Widom. Asymptotic behavior of the eigenvalues of certain integral equations , 1963 .
[11] I. H. SLOAN,et al. Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..
[12] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[13] J. Zabczyk,et al. Stochastic Equations in Infinite Dimensions , 2008 .
[14] Julia Charrier,et al. Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..
[15] Harald Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods 2002 , 2004 .
[16] R. L. Naff,et al. High‐resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 2. Transport results , 1998 .
[17] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[18] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[19] Christoph Schwab,et al. N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs , 2014 .
[20] M. Lemaire,et al. Stochastic Finite Elements , 2010 .
[21] Grzegorz W. Wasilkowski,et al. Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands , 2010, J. Complex..
[22] F. Pillichshammer,et al. Discrepancy Theory and Quasi-Monte Carlo Integration , 2014 .
[23] P. Frauenfelder,et al. Finite elements for elliptic problems with stochastic coefficients , 2005 .
[24] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[25] Frances Y. Kuo,et al. High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.
[26] Henryk Wozniakowski,et al. Finite-order weights imply tractability of multivariate integration , 2004, J. Complex..
[27] Grzegorz W. Wasilkowski,et al. Complexity of Weighted Approximation over R , 2000 .
[28] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[29] Dirk Nuyens,et al. Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..
[30] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[31] Josef Dick,et al. The construction of good extensible rank-1 lattices , 2008, Math. Comput..
[32] Catherine E. Powell,et al. An Introduction to Computational Stochastic PDEs , 2014 .
[33] Christoph Schwab,et al. Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..
[34] A. Debussche,et al. Weak truncation error estimates for elliptic PDEs with lognormal coefficients , 2013 .
[35] Robert Scheichl,et al. Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..
[36] H. Widom. Asymptotic behavior of the eigenvalues of certain integral equations. II , 1964 .
[37] Fred J. Hickernell,et al. On Tractability of Weighted Integration for Certain Banach Spaces of Functions , 2004 .
[38] R. Adler,et al. The Geometry of Random Fields , 1982 .
[39] Grzegorz W. Wasilkowski,et al. Tractability of Approximation and Integration for Weighted Tensor Product Problems over Unbounded Domains , 2002 .
[40] C. J. Gittelson. STOCHASTIC GALERKIN DISCRETIZATION OF THE LOG-NORMAL ISOTROPIC DIFFUSION PROBLEM , 2010 .
[41] Josef Dick. On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..
[42] Fred J. Hickernell,et al. Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .
[43] Frances Y. Kuo,et al. Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..
[44] Frances Y. Kuo,et al. Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..