Analyse et modélisation de vibrations non-linéaires de milieux minces élastiques - Application aux instruments de percussion
暂无分享,去创建一个
[1] R. White,et al. The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures part I: Simply supported and clamped-clamped beams , 1991 .
[2] S. Timoshenko,et al. LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .
[3] T. D. Burton,et al. Analysis of non-linear autonomous conservative oscillators by a time transformation method , 1983 .
[4] M. R. Silva,et al. Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams. I. Equations of Motion , 1978 .
[5] Staffan Schedin,et al. Transient wave response of a cymbal using double-pulsed TV holography , 1998 .
[6] R. Benamar,et al. The Effects of Large Vibration Amplitudes on the Mode Shapes and Natural Frequencies of Thin Elastic Structures, Part II: Fully Clamped Rectangular Isotropic Plates , 1993 .
[7] Gerhard A. Holzapfel,et al. Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .
[8] Ali H. Nayfeh,et al. A numerical-perturbation method for the nonlinear analysis of structural vibrations , 1974 .
[9] J. E. Gordon,et al. Structures: Or Why Things Don't Fall Down , 1978 .
[10] Ali H. Nayfeh,et al. Modal interaction in circular plates , 1990 .
[11] Pedro Ribeiro,et al. The second harmonic and the validity of Duffing’s equation for vibration of beams with large displacements , 2001 .
[12] Arthur W. Leissa,et al. Vibration of Plates , 2021, Solid Acoustic Waves and Vibration.
[13] Charles M. Krousgrill,et al. Non-Linear vibrations and chaos in harmonically excited rectangular plates with one-to-one internal resonance , 1993 .
[14] R. D. Mindlin,et al. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .
[15] G. C. Kung,et al. Nonlinear Flexural Vibrations of a Clamped Circular Plate , 1972 .
[16] A. H. Nayfeh,et al. Non-linear resonances in the forced responses of plates, part 1: Symmetric responses of circular plates , 1975 .
[17] Noboru Yamaki,et al. Influence of Large Amplitudes on Flexural Vibrations of Elastic Plates , 1961 .
[18] C. Chia. Nonlinear analysis of plates , 1980 .
[19] L. Meirovitch. Analytical Methods in Vibrations , 1967 .
[20] G. J. Efstathiades. A new approach to the large-deflection vibrations of imperfect circular disks using Galerkin's procedure , 1971 .
[21] A. Chaigne,et al. Asymmetric non-linear forced vibrations of free-edge circular plates. Part II: Experiments , 2003 .
[22] Ali H. Nayfeh,et al. Nonlinear analysis of the forced response of structural elements , 1974 .
[23] S. A. Tobias,et al. Forced Undamped Non-Linear Vibrations of Imperfect Circular Discs , 1963 .
[24] Arthur W. Leissa,et al. Curvature effects on shallow shell vibrations , 1971 .
[25] T. Kármán. Festigkeitsprobleme im Maschinenbau , 1907 .
[26] Christophe Pierre,et al. Normal modes of vibration for non-linear continuous systems , 1994 .
[27] Lawrence W. Rehfield,et al. Nonlinear free vibrations of elastic structures , 1973 .
[28] T. D. Burton,et al. On the multi-scale analysis of strongly non-linear forced oscillators , 1986 .
[29] J. Irons,et al. Non-linear vibration of centrally clamped thin discs , 1989 .
[30] Yi‐Yuan Yu,et al. Nonlinear Vibrations of Shallow Spherical Shells , 1969 .
[31] Neville H Fletcher,et al. Nonlinearity, chaos, and the sound of shallow gongs , 1989 .
[32] Functional analysis and the method of harmonic balance , 1975 .
[33] T. Rossing,et al. Analysis of cymbal vibrations using nonlinear signal processing methods , 1998 .
[34] Joseph P. Cusumano,et al. Chaotic non-planar vibrations of the thin elastica: Part I: Experimental observation of planar instability , 1995 .
[35] Neville H Fletcher,et al. Nonlinearity and chaos in acoustics , 1989 .
[36] Kimihiko Yasuda,et al. Nonlinear Forced Oscillations of a Shallow Spherical Shell , 1984 .
[37] J. Laroche. The use of the matrix pencil method for the spectrum analysis of musical signals , 1993 .
[38] Alexander F. Vakakis,et al. NON-LINEAR NORMAL MODES (NNMs) AND THEIR APPLICATIONS IN VIBRATION THEORY: AN OVERVIEW , 1997 .
[39] A Chaigne,et al. Time-domain simulation of damped impacted plates. II. Numerical model and results. , 2001, The Journal of the Acoustical Society of America.
[40] S. A. Tobias,et al. The Influence of Dynamical Imperfection on the Vibration of Rotating Disks , 1957 .
[41] Cyril Touzé,et al. ASYMMETRIC NON-LINEAR FORCED VIBRATIONS OF FREE-EDGE CIRCULAR PLATES. PART 1: THEORY , 2002 .
[42] A. Chaigne,et al. Time-domain simulation of damped impacted plates. I. Theory and experiments. , 2001, The Journal of the Acoustical Society of America.
[43] Charles M. Krousgrill,et al. NON-LINEAR DYNAMIC RESPONSE OF SHALLOW ARCHES TO HARMONIC FORCING , 1996 .
[44] Arvind Raman,et al. Effects of imperfection on the non-linear oscillations of circular plates spinning near critical speed , 2001 .
[45] Wanda Szemplińska-Stupnicka,et al. Bifurcations of harmonic solution leading to chaotic motion in the softening type Duffing's oscillator , 1988 .
[46] F. Takens,et al. On the nature of turbulence , 1971 .
[47] J. G. Eisley,et al. A Multiple Degree-of-Freedom Approach to Nonlinear Beam Vibrations , 1970 .
[48] Pierre Schaeffer. Traité des objets musicaux , 1966 .
[49] Ali H. Nayfeh,et al. Bifurcations in a forced softening duffing oscillator , 1989 .
[50] P. R. Sethna,et al. Local and global bifurcations in parametrically excited vibrations of nearly square plates , 1991 .
[51] Joseph P. Cusumano,et al. Chaotic non-planar vibrations of the thin elastica: Part II: Derivation and analysis of a low-dimensional model , 1995 .
[52] S. A. Tobias. Free Undamped Non-Linear Vibrations of Imperfect Circular Disks , 1957 .
[53] O. Millet,et al. Analyse dimensionnelle de l'équation de Navier et application à la théorie des plaques minces , 1997 .
[54] J. Bendat,et al. Random Data: Analysis and Measurement Procedures , 1987 .
[55] Vimal Singh,et al. Perturbation methods , 1991 .
[56] N. Fletcher. Nonlinear frequency shifts in quasispherical‐cap shells: Pitch glide in Chinese gongs , 1985 .
[57] Antoine Chaigne,et al. TIME-DOMAIN MODELING AND NUMERICAL SIMULATION OF A KETTLEDRUM , 1999 .
[58] R. Benamar,et al. The Effects Of Large Vibration Amplitudes On The Mode Shapes And Natural Frequencies Of Thin Elastic Structures, Part III: Fully Clamped Rectangular Isotropic Plates—Measurements Of The Mode Shape Amplitude Dependence And The Spatial Distribution Of Harmonic Distortion , 1994 .
[59] C.J.H. Williams,et al. The stability of nodal patterns in disk vibration , 1966 .
[60] Jean Salençon,et al. Mécanique des milieux continus , 2002 .
[61] N. Fletcher,et al. Music Producers.(Book Reviews: The Physics of Musical Instruments.) , 1991 .
[62] E. Reissner. ON THE THEORY OF BENDING OF ELASTIC PLATES , 1944 .
[63] C. Vendhan. A study of Berger equations applied to non-linear vibrations of elastic plates , 1975 .
[64] M. Sathyamoorthy. Nonlinear Vibrations of Plates: An Update of Recent Research Developments , 1996 .
[65] R. White,et al. The effects of large vibration amplitudes on the fundamental mode shape of a clamped-clamped uniform beam , 1984 .
[66] R. Schmidt. A current trend in shell theory: Constrained geometrically nonlinear Kirchhoff-Love type theories based on polar decomposition of strains and rotations , 1985 .
[67] A. W. Leissa,et al. Literature Review : Plate Vibration Research, 1976 - 1980: Complicating Effects , 1981 .
[68] O. Millet,et al. Justification du modèle bidimensionnel non linéaire de plaque par développement asymptotique des équations d'équilibre , 1997 .
[69] Neville H Fletcher. Nonlinear dynamics and chaos in musical instruments , 1993 .
[70] H. Saunders,et al. Acoustics: An Introduction to Its Physical Principles and Applications , 1984 .
[71] Ali H. Nayfeh,et al. On Nonlinear Modes of Continuous Systems , 1994 .
[72] M. Sathyamoorthy,et al. Nonlinear Vibration Analysis of Plates: A Review and Survey of Current Developments , 1987 .
[73] A. W. Leissa,et al. Recent Research in Plate Vibrations. 1973 - 1976: Complicating Effects , 1978 .
[74] M. Sathyamoorthy,et al. NONLINEAR VIBRATIONS OF PLATES - A REVIEW. , 1983 .
[75] A. Nayfeh,et al. Non-linear analysis of vibrations of irregular plates , 1977 .
[76] André Gribenski,et al. Acoustique et musique , 1973 .
[77] A. W. Leissa,et al. Recent studies in plate vibrations: 1981-85. I: Classical theory , 1987 .
[78] Albert C. J. Luo,et al. A quantitative stability and bifurcation analyses of the generalized duffing oscillator with strong nonlinearity , 1997 .
[79] Charles M. Krousgrill,et al. HARMONIC BALANCE AND CONTINUATION TECHNIQUES IN THE DYNAMIC ANALYSIS OF DUFFING'S EQUATION , 1997 .
[80] Cyril Touzé,et al. Lyapunov exponents from experimental time series. Application to cymbal vibrations , 2000 .
[81] Philippe G. Ciarlet,et al. A justification of the von Kármán equations , 1980 .
[82] G. Duvaut. Mécanique des milieux continus , 1990 .
[83] H. Berger. A new approach to the analysis of large deflections of plates , 1954 .
[84] D. S. Dugdale. Non-linear vibration of a centrally clamped rotating disc , 1979 .
[85] John Guckenheimer,et al. A Dynamical System Toolkit with an Interactive Graphical Interface , 1997 .
[86] T. Rossing,et al. Determination of modal coupling in vibrating rectangular plates , 1984 .