Deciding equivalence of top-down XML transformations in polynomial time

Many useful XML transformations can be expressed by deterministic top-down tree transducers. A normal form is presented for such transducers (extended with the facility to inspect their input trees). A transducer in normal form has a unique canonical form which can be obtained by a minimization procedure, in polynomial time. Thus, equivalence of transducers in normal form can be decided in polynomial time. If the transducer is total, the normal form can be obtained in polynomial time as well.

[1]  Joost Engelfriet,et al.  SOME OPEN QUESTIONS AND RECENT RESULTS ON TREE TRANSDUCERS AND TREE LANGUAGES , 1980 .

[2]  Akihiko Tozawa Towards static type checking for XSLT , 2001, DocEng '01.

[3]  Ronald V. Book,et al.  Formal language theory : perspectives and open problems , 1980 .

[4]  Ferenc Gécseg,et al.  Minimal ascending tree automata , 1978, Acta Cybern..

[5]  Anatoliy O. Buda,et al.  Generalized1.5 Sequential Machine Maps , 1979, Inf. Process. Lett..

[6]  Dan Suciu,et al.  Containment and equivalence for a fragment of XPath , 2004, JACM.

[7]  Andreas Podelski,et al.  Minimal Ascending and Descending Tree Automata , 1997, SIAM J. Comput..

[8]  Dan Suciu,et al.  Index Structures for Path Expressions , 1999, ICDT.

[9]  Sándor Vágvölgyi,et al.  Top-Down Tree Transducers with Deterministic Top-Down Look-Ahead , 1989, Inf. Process. Lett..

[10]  Zoltán Ésik,et al.  Decidability results concerning tree transducers II , 1983, Acta Cybern..

[11]  Zoltán Ésik,et al.  Decidability results concerning tree transducers I , 1980, Acta Cybern..

[12]  Peter Lammich,et al.  Tree Automata , 2009, Arch. Formal Proofs.

[13]  William C. Rounds,et al.  Mappings and grammars on trees , 1970, Mathematical systems theory.

[14]  J. Engelfriet Top-down tree transducers with regular look-ahead , 1975 .

[15]  James W. Thatcher,et al.  Generalized Sequential Machine Maps , 1970, J. Comput. Syst. Sci..

[16]  Joost Engelfriet,et al.  Macro Tree Transducers , 1985, J. Comput. Syst. Sci..

[17]  Zoltán Fülöp,et al.  Syntax-Directed Semantics , 1998, Monographs in Theoretical Computer Science An EATCS Series.

[18]  Frank Neven,et al.  Structured Document Transformations Based on XSL , 1999, DBPL.

[19]  Joost Engelfriet,et al.  Tree transducers, L systems and two-way machines (Extended Abstract) , 1978, J. Comput. Syst. Sci..

[20]  Joost Engelfriet,et al.  The equivalence problem for deterministic MSO tree transducers is decidable , 2005, Inf. Process. Lett..

[21]  Pierre Wolper,et al.  An efficient automata approach to some problems on context-free grammars , 2000, Inf. Process. Lett..

[22]  Alfred V. Aho,et al.  Translations on a Context-Free Grammar , 1971, Inf. Control..

[23]  Z. Zachar,et al.  The solvability of the equivalence problem for deterministic frontier-to-root tree transducers , 1979, Acta Cybern..

[24]  Mihalis Yannakakis,et al.  Algorithms for Acyclic Database Schemes , 1981, VLDB.

[25]  Laks V. S. Lakshmanan,et al.  Minimization of tree pattern queries , 2001, SIGMOD '01.

[26]  Frank Neven,et al.  On the complexity of typechecking top-down XML transformations , 2005, Theor. Comput. Sci..

[27]  Laks V. S. Lakshmanan,et al.  Tree pattern query minimization , 2002, The VLDB Journal.

[28]  Sándor Vágvölgyi,et al.  Top-Down Tree Transducers with Two-Way Tree Walking Look-Ahead , 1992, Theor. Comput. Sci..

[29]  Timothy V. Griffiths The unsolvability of the Equivalence Problem for Λ-Free nondeterministic generalized machines , 1968, JACM.

[30]  Helmut Seidl,et al.  Macro forest transducers , 2004, Inf. Process. Lett..

[31]  Mehryar Mohri,et al.  Minimization algorithms for sequential transducers , 2000, Theor. Comput. Sci..

[32]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .