Strong and Auxiliary Forms of the Semi-Lagrangian Method for Incompressible Flows

We present a review of the semi-Lagrangian method for advection–diffusion and incompressible Navier–Stokes equations discretized with high-order methods. In particular, we compare the strong form where the departure points are computed directly via backwards integration with the auxiliary form where an auxiliary advection equation is solved instead; the latter is also referred to as Operator Integration Factor Splitting (OIFS) scheme. For intermediate size of time steps the auxiliary form is preferrable but for large time steps only the strong form is stable.

[1]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[2]  André Robert,et al.  A stable numerical integration scheme for the primitive meteorological equations , 1981 .

[3]  Francis X. Giraldo,et al.  Strong and Weak Lagrange-Galerkin Spectral Element Methods for the Shallow Water Equations , 2003 .

[4]  J. R. Bates,et al.  Improving the Estimate of the Departure Point Position in a Two-Time Level Semi-Lagrangian and Semi-Implicit Scheme , 1987 .

[5]  Spencer J. Sherwin,et al.  A Substepping Navier-Stokes Splitting Scheme for Spectral/hp Element Discretisations , 2003 .

[6]  M. Falcone,et al.  Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes , 1998 .

[7]  J. McGregor,et al.  Economical Determination of Departure Points for Semi-Lagrangian Models , 1993 .

[8]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[9]  R.D. Loft,et al.  Terascale Spectral Element Dynamical Core for Atmospheric General Circulation Models , 2001, ACM/IEEE SC 2001 Conference (SC'01).

[10]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[11]  George Em Karniadakis,et al.  Nodes, modes and flow codes , 1993 .

[12]  P. Smolarkiewicz,et al.  A class of semi-Lagrangian approximations for fluids. , 1992 .

[13]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[14]  Stephen J. Thomas,et al.  Parallel algorithms for semi-lagrangian advection , 1997, International Journal for Numerical Methods in Fluids.

[15]  A. Baptista,et al.  A comparison of integration and interpolation Eulerian‐Lagrangian methods , 1995 .

[16]  Endre Süli,et al.  Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations , 1988 .

[17]  Rodolfo Bermejo,et al.  Finite element modified method of characteristics for the Navier–Stokes equations , 2000 .

[18]  A. Mcdonald Accuracy of Multiply-Upstream, Semi-Lagrangian Advective Schemes , 1984 .

[19]  Andrei V. Malevsky,et al.  Spline-Characteristic Method for Simulation of Convective Turbulence , 1996 .

[20]  Jin Xu,et al.  A Semi-Lagrangian Method for Turbulence Simulations Using Mixed Spectral Discretizations , 2002, J. Sci. Comput..

[21]  Francis X. Giraldo,et al.  The Lagrange-Galerkin Spectral Element Method on Unstructured Quadrilateral Grids , 1998 .

[22]  A. Priestley,et al.  Exact projections and the Lagrange-Galerkin method: a realistic alternative to quadrature , 1994 .

[23]  J. P. Huffenus,et al.  A finite element method to solve the Navier‐Stokes equations using the method of characteristics , 1984 .

[24]  Jean-Luc Guermond,et al.  Convergence Analysis of a Finite Element Projection/Lagrange-Galerkin Method for the Incompressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..

[25]  Einar M. Rønquist,et al.  An Operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow , 1990 .

[26]  Stephen J. Thomas,et al.  The Cost-Effectiveness of Semi-Lagrangian Advection , 1996 .

[27]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[28]  George Em Karniadakis,et al.  A semi-Lagrangian high-order method for Navier-Stokes equations , 2001 .

[29]  Emmanuel Leriche,et al.  High-Order Direct Stokes Solvers with or Without Temporal Splitting: Numerical Investigations of Their Comparative Properties , 2000, SIAM J. Sci. Comput..

[30]  Robert L. Street,et al.  The Lid-Driven Cavity Flow: A Synthesis of Qualitative and Quantitative Observations , 1984 .

[31]  Joel Ferziger,et al.  Higher Order Methods for Incompressible Fluid Flow: by Deville, Fischer and Mund, Cambridge University Press, 499 pp. , 2003 .