Strong and Auxiliary Forms of the Semi-Lagrangian Method for Incompressible Flows
暂无分享,去创建一个
Dongbin Xiu | Suchuan Dong | Spencer J. Sherwin | George E. Karniadakis | D. Xiu | G. Karniadakis | S. Sherwin | S. Dong
[1] G. Karniadakis,et al. Spectral/hp Element Methods for CFD , 1999 .
[2] André Robert,et al. A stable numerical integration scheme for the primitive meteorological equations , 1981 .
[3] Francis X. Giraldo,et al. Strong and Weak Lagrange-Galerkin Spectral Element Methods for the Shallow Water Equations , 2003 .
[4] J. R. Bates,et al. Improving the Estimate of the Departure Point Position in a Two-Time Level Semi-Lagrangian and Semi-Implicit Scheme , 1987 .
[5] Spencer J. Sherwin,et al. A Substepping Navier-Stokes Splitting Scheme for Spectral/hp Element Discretisations , 2003 .
[6] M. Falcone,et al. Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes , 1998 .
[7] J. McGregor,et al. Economical Determination of Departure Points for Semi-Lagrangian Models , 1993 .
[8] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[9] R.D. Loft,et al. Terascale Spectral Element Dynamical Core for Atmospheric General Circulation Models , 2001, ACM/IEEE SC 2001 Conference (SC'01).
[10] O. Pironneau. On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .
[11] George Em Karniadakis,et al. Nodes, modes and flow codes , 1993 .
[12] P. Smolarkiewicz,et al. A class of semi-Lagrangian approximations for fluids. , 1992 .
[13] A. Staniforth,et al. Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .
[14] Stephen J. Thomas,et al. Parallel algorithms for semi-lagrangian advection , 1997, International Journal for Numerical Methods in Fluids.
[15] A. Baptista,et al. A comparison of integration and interpolation Eulerian‐Lagrangian methods , 1995 .
[16] Endre Süli,et al. Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations , 1988 .
[17] Rodolfo Bermejo,et al. Finite element modified method of characteristics for the Navier–Stokes equations , 2000 .
[18] A. Mcdonald. Accuracy of Multiply-Upstream, Semi-Lagrangian Advective Schemes , 1984 .
[19] Andrei V. Malevsky,et al. Spline-Characteristic Method for Simulation of Convective Turbulence , 1996 .
[20] Jin Xu,et al. A Semi-Lagrangian Method for Turbulence Simulations Using Mixed Spectral Discretizations , 2002, J. Sci. Comput..
[21] Francis X. Giraldo,et al. The Lagrange-Galerkin Spectral Element Method on Unstructured Quadrilateral Grids , 1998 .
[22] A. Priestley,et al. Exact projections and the Lagrange-Galerkin method: a realistic alternative to quadrature , 1994 .
[23] J. P. Huffenus,et al. A finite element method to solve the Navier‐Stokes equations using the method of characteristics , 1984 .
[24] Jean-Luc Guermond,et al. Convergence Analysis of a Finite Element Projection/Lagrange-Galerkin Method for the Incompressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..
[25] Einar M. Rønquist,et al. An Operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow , 1990 .
[26] Stephen J. Thomas,et al. The Cost-Effectiveness of Semi-Lagrangian Advection , 1996 .
[27] P. Fischer,et al. High-Order Methods for Incompressible Fluid Flow , 2002 .
[28] George Em Karniadakis,et al. A semi-Lagrangian high-order method for Navier-Stokes equations , 2001 .
[29] Emmanuel Leriche,et al. High-Order Direct Stokes Solvers with or Without Temporal Splitting: Numerical Investigations of Their Comparative Properties , 2000, SIAM J. Sci. Comput..
[30] Robert L. Street,et al. The Lid-Driven Cavity Flow: A Synthesis of Qualitative and Quantitative Observations , 1984 .
[31] Joel Ferziger,et al. Higher Order Methods for Incompressible Fluid Flow: by Deville, Fischer and Mund, Cambridge University Press, 499 pp. , 2003 .