Revisiting parameter identification in electrochemical impedance spectroscopy: Weighted least squares and optimal experimental design

Abstract In this article several computational tools related to parameter identification and optimal experimental design (OED) in electrochemical impedance spectroscopy (EIS) are introduced. Weighted and iteratively reweighted least squares are revisited and are coupled to an optimization procedure, which aims at increasing the confidence on the estimated parameters and/or at shortening the experimental time without compromising the accuracy of the estimates. A sequential algorithm allowing real-time implementation of OED is also developed. A fuel cell electrode system model is used to test and validate the methods developed.

[1]  William J. Thompson,et al.  The collected works of john w. tukey , 1991 .

[2]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[3]  L. Skovgaard NONLINEAR MODELS FOR REPEATED MEASUREMENT DATA. , 1996 .

[4]  P. McCullagh Quasi-Likelihood Functions , 1983 .

[5]  Sossina M. Haile,et al.  Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria , 2005 .

[6]  Harvey Thomas Banks,et al.  An Inverse Problem Statistical Methodology Summary , 2007 .

[7]  Meilin Liu,et al.  Surface regeneration of sulfur-poisoned Ni surfaces under SOFC operation conditions predicted by first-principles-based thermodynamic calculations , 2008 .

[8]  Bernard A. Boukamp,et al.  Electrochemical impedance spectroscopy in solid state ionics: recent advances , 2004 .

[9]  L. Wasserman All of Nonparametric Statistics , 2005 .

[10]  J. Ross Macdonald,et al.  Precision of impedance spectroscopy estimates of bulk, reaction rate, and diffusion parameters , 1991 .

[11]  Eric Walter,et al.  Identifiability and distinguishability concepts in electrochemistry , 1996, Autom..

[12]  Joachim Maier,et al.  A powerful electrical network model for the impedance of mixed conductors , 1999 .

[13]  André Bardow,et al.  Optimal experimental design of ill-posed problems: The METER approach , 2008, Comput. Chem. Eng..

[14]  J. Ross Macdonald,et al.  Comparison of Parametric and Nonparametric Methods for the Analysis and Inversion of Immittance Data , 2000 .

[15]  T. Dickinson,et al.  Some experimental factors which affect the analysis of impedance measurements , 1977 .

[16]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[17]  Juergen Fleig On the current-voltage characteristics of charge transfer reactions at mixed conducting electrodes on solid electrolytes. , 2005, Physical chemistry chemical physics : PCCP.

[18]  P. Żółtowski A new approach to measurement modelling in electrochemical impedance spectroscopy , 1994 .

[19]  D. Ucinski Optimal measurement methods for distributed parameter system identification , 2004 .

[20]  Pavan K. Shukla,et al.  Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements , 2002 .

[21]  D. Macdonald Reflections on the history of electrochemical impedance spectroscopy , 2006 .

[22]  F. Ciucci Continuum modeling of mixed conductors : a study of ceria , 2009 .

[23]  J. E. Elshof,et al.  Oxygen Exchange and Diffusion Coefficients of Strontium‐Doped Lanthanum Ferrites by Electrical Conductivity Relaxation , 1997 .

[24]  A. Sadkowski,et al.  CNLS fits and Kramers–Kronig validation of resonant EIS data , 2004 .

[25]  Anthony C. Atkinson,et al.  Optimum Experimental Designs , 1992 .

[26]  Nicolai Bissantz,et al.  Convergence Analysis of Generalized Iteratively Reweighted Least Squares Algorithms on Convex Function Spaces , 2008, SIAM J. Optim..

[27]  J. Diard,et al.  Theoretical formulation of the odd harmonic test criterion for EIS measurements , 1994 .

[28]  Bouwmeester,et al.  Use of the Rigid Band Formalism to Interpret the Relationship between O Chemical Potential and Electron Concentration in La 1-xSrxCoO3- delta. , 1996, Physical review letters.

[29]  G. Seber,et al.  Nonlinear Regression: Seber/Nonlinear Regression , 2005 .

[30]  C. Gouriéroux,et al.  PSEUDO MAXIMUM LIKELIHOOD METHODS: THEORY , 1984 .

[31]  M. Orazem,et al.  The Error Structure of Impedance Spectra for Systems with a Large Ohmic Resistance with Respect to the Polarization Impedance , 1996 .

[32]  David R. Cox,et al.  PRINCIPLES OF STATISTICAL INFERENCE , 2017 .

[33]  Francesco Ciucci,et al.  Surface reaction and transport in mixed conductors with electrochemically-active surfaces: a 2-D numerical study of ceria. , 2011, Physical chemistry chemical physics : PCCP.

[34]  Mark E. Orazem,et al.  A systematic approach toward error structure identification for impedance spectroscopy , 2004 .

[35]  V. Horvat-Radošević,et al.  Impedance spectroscopy of oxidized polyaniline and poly(o-ethoxyaniline) thin film modified Pt electrodes , 2006 .

[36]  P. Green Iteratively reweighted least squares for maximum likelihood estimation , 1984 .

[37]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[38]  P. Żółtowski The error function for fitting of models to immittance data , 1984 .

[39]  Bernard A. Boukamp,et al.  A package for impedance/admittance data analysis , 1986 .

[40]  E. Walter,et al.  Choice of experimental method induced by structural properties of mechanisms , 1995 .

[41]  J. Macdonald,et al.  Alternatives to Kronig-Kramers transformation and testing, and estimation of distributions , 1994 .

[42]  M. Orazem,et al.  Validation of the measurement model concept for error structure identification , 2004 .

[43]  V. Fedorov,et al.  Parameter Estimation for Models with Unknown Parameters in Variance , 2004 .

[44]  Fabienne Berthier,et al.  Distinguishability of equivalent circuits containing CPEs Part I. Theoretical part , 2001 .

[45]  Amit Kumar,et al.  Measuring oxygen reduction/evolution reactions on the nanoscale. , 2011, Nature chemistry.

[46]  J. Dygas,et al.  Variance of errors and elimination of outliers in the least squares analysis of impedance spectra , 1999 .

[47]  Wei Lai,et al.  Reducing error and measurement time in impedance spectroscopy using model based optimal experimental design , 2011 .

[48]  T. Hilpert Multivariate analysis of multiple impedance spectra , 2006 .

[49]  Yoed Tsur,et al.  Analyzing results of impedance spectroscopy using novel evolutionary programming techniques , 2010 .

[50]  Oscar D. Crisalle,et al.  On the Error Structure of Impedance Measurements Simulation of FRA Instrumentation , 2003 .

[51]  Sandro Macchietto,et al.  Model-based design of experiments for parameter precision: State of the art , 2008 .

[52]  Wei Lai Fourier analysis of complex impedance (amplitude and phase) in nonlinear systems: A case study of diodes , 2010 .

[53]  J. Ross Macdonald,et al.  A flexible procedure for analyzing impedance spectroscopy results: Description and illustrations , 1987 .

[54]  Yoed Tsur,et al.  Harnessing evolutionary programming for impedance spectroscopy analysis: A case study of mixed ionic-electronic conductors , 2011 .

[55]  P. Żółtowski The power of reparametrization of measurement models in electrochemical impedance spectroscopy , 1997 .

[56]  W. Chueh,et al.  Electrochemical behavior of ceria with selected metal electrodes , 2008 .

[57]  Larry Wasserman,et al.  All of Statistics: A Concise Course in Statistical Inference , 2004 .

[58]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[59]  Bernard A. Boukamp,et al.  Practical application of the Kramers-Kronig transformation on impedance measurements in solid state electrochemistry , 1993 .

[60]  P. Laycock,et al.  Optimum Experimental Designs , 1995 .

[61]  Norman R. Draper,et al.  An overview of design of experiments , 1996 .

[62]  H. Schichlein,et al.  Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells , 2002 .

[63]  J. Macdonald,et al.  Comparison and application of two methods for the least squares analysis of immittance data , 1992 .

[64]  M. Guzman,et al.  Chemisorption on semiconductors: The role of quantum corrections on the space charge regions in multiple dimensions , 2012 .

[65]  Yoed Tsur,et al.  ISGP: Impedance Spectroscopy Analysis Using Evolutionary Programming Procedure , 2011 .

[66]  Valerii V. Fedorov,et al.  Design of experiments with unknown parameters in variance , 2002 .

[67]  Ping Liu,et al.  Nano-scale effects in electrochemistry , 2004 .