Influence of polymer flexibility on nanoparticle dynamics in semidilute solutions.

The hierarchical structure and dynamics of polymer solutions control the transport of nanoparticles (NPs) through them. Here, we perform multi-particle collision dynamics simulations of solutions of semiflexible polymer chains with tunable persistence length lp to investigate the effect of chain stiffness on NP transport. The NPs exhibit two distinct dynamical regimes - subdiffusion on short time scales and diffusion on long time scales. The long-time NP diffusivities are compared with predictions from the Stokes-Einstein relation (SER), mode-coupling theory (MCT), and a recent polymer coupling theory (PCT). Increasing deviations from the SER as the polymer chains become more rigid (i.e. as lp increases) indicate that the NP motions become decoupled from the bulk viscosity of the polymer solution. Likewise, polymer stiffness leads to deviations from PCT, which was developed for fully flexible chains. Independent of lp, however, the long-time diffusion behavior is well-described by MCT, particularly at high polymer concentration. We also observed that the short-time subdiffusive dynamics are strongly dependent on polymer flexibility. As lp is increased, the NP dynamics become more subdiffusive and decouple from the dynamics of the polymer chain center-of-mass. We posit that these effects are due to differences in the segmental mobility of the semiflexible chains.

[1]  S. Manorama,et al.  Nanosized spinel NiFe2O4: A novel material for the detection of liquefied petroleum gas in air , 2003 .

[2]  Jizhong Chen,et al.  Structural Mechanism for Viscosity of Semiflexible Polymer Melts in Shear Flow. , 2017, ACS macro letters.

[3]  James M. Tour,et al.  Polymer-Coated Nanoparticles for Enhanced Oil Recovery , 2014 .

[4]  A. Malevanets,et al.  Mesoscopic model for solvent dynamics , 1999 .

[5]  Michael P. Howard,et al.  Equilibrium Dynamics and Shear Rheology of Semiflexible Polymers in Solution , 2017 .

[6]  H. Finkelmann,et al.  A new opto-mechanical effect in solids. , 2001, Physical review letters.

[7]  Luky Hendraningrat,et al.  A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension , 2016, International Nano Letters.

[8]  M. Tirrell,et al.  Hydrodynamic screening and particle dynamics in porous media, semidilute polymer solutions and polymer gels , 1986 .

[9]  Frenkel,et al.  Simulation study of the isotropic-to-nematic transitions of semiflexible polymers. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  S. Egorov A mode-coupling theory of diffusion in supercritical fluids , 2003 .

[11]  B. Lindner,et al.  Local motion analysis reveals impact of the dynamic cytoskeleton on intracellular subdiffusion. , 2012, Biophysical journal.

[12]  A. R. Kulkarni,et al.  Biodegradable polymeric nanoparticles as drug delivery devices. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[13]  K. Kremer,et al.  Advanced Computer Simulation Approaches for Soft Matter Sciences III , 2005 .

[14]  R. Byron Bird,et al.  Tube flow of non‐Newtonian polymer solutions: PART I. Laminar flow and rheological models , 1964 .

[15]  Todd M. Squires,et al.  Fluid Mechanics of Microrheology , 2010 .

[16]  Peter Lindner,et al.  How dendrons stiffen polymer chains: A SANS study. , 1999 .

[17]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[18]  Holger Stark,et al.  Novel Colloidal Interactions in Anisotropic Fluids , 1997, Science.

[19]  J. D. Wells,et al.  On the transport of compact particles through solutions of chain-polymers , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  J. Conrad,et al.  Size-Dependent Dynamics of Nanoparticles in Unentangled Polyelectrolyte Solutions. , 2015, ACS macro letters.

[21]  D. Weitz,et al.  Rheology of F-actin solutions determined from thermally driven tracer motion , 2000 .

[22]  David C. Morse,et al.  VISCOELASTICITY OF TIGHTLY ENTANGLED SOLUTIONS OF SEMIFLEXIBLE POLYMERS , 1998 .

[23]  Hiroshi Noguchi,et al.  Particle-based mesoscale hydrodynamic techniques , 2006, cond-mat/0610890.

[24]  F. MacKintosh,et al.  Dynamic shear modulus of a semiflexible polymer network , 1998 .

[25]  Suresh Narayanan,et al.  Breakdown of the continuum stokes-einstein relation for nanoparticle diffusion. , 2007, Nano letters.

[26]  R. Colby,et al.  Mechanical Reinforcement of Polymer Nanocomposites from Percolation of a Nanoparticle Network. , 2015, ACS macro letters.

[27]  M. Kalos,et al.  Molecular dynamics of polymeric systems , 1979 .

[28]  T. Ihle,et al.  Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  K. Binder,et al.  A new insight into the isotropic-nematic phase transition in lyotropic solutions of semiflexible polymers: density-functional theory tested by molecular dynamics. , 2016, Soft matter.

[30]  W. G. Miller,et al.  Thermodynamics and dynamics of polypeptide liquid crystals , 1974 .

[31]  Gerhard Gompper,et al.  Semidilute Polymer Solutions at Equilibrium and under Shear Flow , 2010, 1103.3573.

[32]  P. G. de Gennes,et al.  Viscosity at small scales in polymer melts , 2000 .

[33]  George D. J. Phillies,et al.  Universal scaling equation for self-diffusion by macromolecules in solution , 1986 .

[34]  S. Egorov Anomalous nanoparticle diffusion in polymer solutions and melts: a mode-coupling theory study. , 2011, The Journal of chemical physics.

[35]  F Müller-Plathe,et al.  Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Andrew L. Ferguson,et al.  Investigating the optimal size of anticancer nanomedicine , 2014, Proceedings of the National Academy of Sciences.

[37]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[38]  W. Kob,et al.  Addition to Structure and Dynamics of a Polymer–Nanoparticle Composite: Effect of Nanoparticle Size and Volume Fraction , 2018, Macromolecules.

[39]  A. Semenov Dynamics of concentrated solutions of rigid-chain polymers. Part 1.—Brownian motion of persistent macromolecules in isotropic solution , 1986 .

[40]  Gerhard Hummer,et al.  System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions , 2004 .

[41]  Mason,et al.  Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.

[42]  G. Gompper,et al.  Mesoscopic solvent simulations: multiparticle-collision dynamics of three-dimensional flows. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  A. Aneese,et al.  Diffusion of nanoparticles in semidilute and entangled polymer solutions. , 2009, Journal of Physical Chemistry B.

[44]  K. Binder,et al.  Screening of hydrodynamic interactions in dense polymer solutions: a phenomenological theory and neutron-scattering investigations , 1984 .

[45]  Jacinta C. Conrad,et al.  Mobility of Nanoparticles in Semidilute Polyelectrolyte Solutions , 2014 .

[46]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[47]  D. Eckmann,et al.  Intracellular nanoparticle dynamics affected by cytoskeletal integrity. , 2017, Soft matter.

[48]  Lee J. Hubble,et al.  Performance of graphene, carbon nanotube, and gold nanoparticle chemiresistor sensors for the detection of petroleum hydrocarbons in water , 2013, Journal of Nanoparticle Research.

[49]  Andreas Heuer,et al.  Local Reorientation Dynamics of Semiflexible Polymers in the Melt , 2000 .

[50]  Ferdinand F. E. Kohle,et al.  Dynamics of Nanoparticles in Entangled Polymer Solutions. , 2018, Langmuir.

[51]  J. van der Gucht,et al.  Rouse dynamics of colloids bound to polymer networks. , 2007, Physical review letters.

[52]  K. Schweizer,et al.  Theory of nanoparticle diffusion in unentangled and entangled polymer melts. , 2011, The Journal of chemical physics.

[53]  K. Schweizer,et al.  Microscopic Theory of the Long-Time Diffusivity and Intermediate-Time Anomalous Transport of a Nanoparticle in Polymer Melts , 2015 .

[54]  Sharon C. Glotzer,et al.  Efficient neighbor list calculation for molecular simulation of colloidal systems using graphics processing units , 2016, Comput. Phys. Commun..

[55]  P. de Gennes,et al.  Viscosity at small scales in polymer melts , 2000 .

[56]  F Müller-Plathe,et al.  Chain stiffness intensifies the reptation characteristics of polymer dynamics in the melt. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[57]  Biswajit Sarkar,et al.  Block copolymer-nanoparticle composites: Structure, functional properties, and processing , 2015 .

[58]  Robert I. Cukier,et al.  Diffusion of Brownian spheres in semidilute polymer solutions , 1984 .

[59]  Pak Lui,et al.  Strong scaling of general-purpose molecular dynamics simulations on GPUs , 2014, Comput. Phys. Commun..

[60]  Gerhard Gompper,et al.  Multiparticle collision dynamics modeling of viscoelastic fluids. , 2008, The Journal of chemical physics.

[61]  A. Mukhopadhyay,et al.  Diffusion of Nanoparticles in Semidilute Polymer Solutions: Effect of Different Length Scales , 2012 .

[62]  M. Rubinstein,et al.  Mobility of Nonsticky Nanoparticles in Polymer Liquids. , 2011, Macromolecules.

[63]  D. Reichman,et al.  Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. , 2004, Physical review letters.

[65]  Michael P. Howard,et al.  Coupling of Nanoparticle Dynamics to Polymer Center-of-Mass Motion in Semidilute Polymer Solutions , 2017, 1711.01014.

[66]  G. Grest,et al.  Particle dynamics modeling methods for colloid suspensions , 2014, CPM 2014.

[67]  T. C. B. McLeish,et al.  Polymer Physics , 2009, Encyclopedia of Complexity and Systems Science.

[68]  Nanrong Zhao,et al.  The effect of hydrodynamic interactions on nanoparticle diffusion in polymer solutions: a multiparticle collision dynamics study. , 2017, Soft matter.

[69]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[70]  L. Johansson,et al.  Diffusion and interaction in gels and solutions. 3. Theoretical results on the obstruction effect , 1991 .

[71]  M. A. Rao,et al.  Rheology of Fluid, Semisolid, and Solid Foods: Principles and Applications , 2014 .

[72]  A. Faraone,et al.  Structure and Dynamics of Interacting Nanoparticles in Semidilute Polymer Solutions , 2016 .

[73]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[74]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[75]  Kurt Binder,et al.  Dynamics of single semiflexible polymers in dilute solution. , 2016, The Journal of chemical physics.

[76]  Ho-Cheol Kim,et al.  Nanoscale effects leading to non-Einstein-like decrease in viscosity , 2003, Nature materials.

[77]  Michael P. Howard,et al.  Efficient mesoscale hydrodynamics: Multiparticle collision dynamics with massively parallel GPU acceleration , 2018, Comput. Phys. Commun..

[78]  Mauro Ferrari,et al.  Principles of nanoparticle design for overcoming biological barriers to drug delivery , 2015, Nature Biotechnology.

[79]  D. Weitz,et al.  Scaling of the microrheology of semidilute F-actin solutions , 1999 .