Fractional models of anomalous relaxation based on the Kilbas and Saigo function
暂无分享,去创建一个
[1] G. Mittag-Leffler,et al. Sur la répresentation analytique d'une branche uniforme d'une fonction monogène , 2016 .
[2] Francesco Mainardi,et al. Fractional relaxation with time-varying coefficient , 2014 .
[3] R. Sibatov,et al. Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems , 2012 .
[4] A. Hanyga,et al. Anisotropy in high-resolution diffusion-weighted MRI and anomalous diffusion. , 2012, Journal of magnetic resonance.
[5] F. Mainardi,et al. Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics , 2011, 1106.1761.
[6] Aleksander Stanislavsky,et al. Subordination model of anomalous diffusion leading to the two-power-law relaxation responses , 2010, 1111.3014.
[7] Karina Weron,et al. Overshooting and undershooting subordination scenario for fractional two-power-law relaxation responses. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[8] V. Kiryakova,et al. The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus , 2010, Comput. Math. Appl..
[9] M. Teuerle,et al. Generalized Mittag-Leffler relaxation: clustering-jump continuous-time random walk approach. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[10] R. Gorenflo,et al. Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.
[11] A. Hanyga,et al. On a Mathematical Framework for the Constitutive Equations of Anisotropic Dielectric Relaxation , 2008 .
[12] S. Havriliak,et al. A complex plane analysis of α‐dispersions in some polymer systems , 2007 .
[13] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[14] Robert S. Anderssen,et al. The Kohlrausch function: properties and applications , 2004 .
[15] Karina Weron,et al. Relaxation of dynamically correlated clusters , 2002 .
[16] R. Hilfer,et al. Analytical representations for relaxation functions of glasses , 2002, cond-mat/0212622.
[17] R. Hilfer,et al. H-function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[18] K. Miller,et al. Completely monotonic functions , 2001 .
[19] Virginia Kiryakova,et al. Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus , 2000 .
[20] A. Kilbas,et al. The solution of a class of linear differential equations via functions of the Mittag-Leffler type , 2000 .
[21] Sergei V. Rogosin,et al. On the generalized mittag-leffler type functions , 1998 .
[22] Megumi Saigo,et al. On mittag-leffler type function, fractional calculas operators and solutions of integral equations , 1996 .
[23] Anatoly A. Kilbas,et al. On solution of integral equation of Abel-Volterra type , 1995, Differential and Integral Equations.
[24] Lokenath Debnath,et al. Introduction to the Theory and Application of the Laplace Transformation , 1974, IEEE Transactions on Systems, Man, and Cybernetics.
[25] R. Cole,et al. Dielectric Relaxation in Glycerol, Propylene Glycol, and n‐Propanol , 1951 .
[26] K. Cole,et al. Dispersion and Absorption in Dielectrics II. Direct Current Characteristics , 1942 .
[27] K. Cole,et al. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .
[28] T. Kaczorek,et al. Fractional Differential Equations , 2015 .
[29] M. T. Cicero. FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .
[30] A. Kilbas,et al. An Analog of the Tricomi Problem for a Mixed Type Equation with a Partial Fractional Derivative , 2010 .
[31] Megumi Saigo,et al. Certain Properties of Fractional Calculus Operators Associated with Generalized Mittag-Leffler Function , 2005 .
[32] Virginia Kiryakova,et al. MULTIINDEX MITTAG-LEFFLER FUNCTIONS, RELATED GELFOND-LEONTIEV OPERATORS AND LAPLACE TYPE INTEGRAL TRANSFORMS ⁄ , 1999 .
[33] Kenneth S. Miller,et al. A Note on the Complete Monotonicity of the Generalized Mittag-Leffler Function , 1997 .
[34] A. Jonscher. Dielectric relaxation in solids , 1983 .
[35] T. R. Prabhakar. A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .
[36] Graham Williams,et al. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function , 1970 .
[37] S. Havriliak,et al. A complex plane representation of dielectric and mechanical relaxation processes in some polymers , 1967 .
[38] E. C. Titchmarsh,et al. The Laplace Transform , 1991, Heat Transfer 1.
[39] R. Kohlrausch. Theorie des elektrischen Rückstandes in der Leidener Flasche , 1854 .
[40] F. Polito,et al. Some results on time-varying fractional partial differential equations and birth-death processes , 2022 .