Formation of interface and surface oxides on supported Pd nanoparticles

[1]  H. Freund,et al.  Oxygen-induced Restructuring of a Pd/Fe3O4 Model Catalyst , 2006 .

[2]  H. Freund,et al.  Oxygen storage at the metal/oxide interface of catalyst nanoparticles. , 2005, Angewandte Chemie.

[3]  H. Freund,et al.  Molecular beam experiments on model catalysts , 2005 .

[4]  H. Freund Model studies on heterogeneous catalysts at the atomic level , 2005 .

[5]  G. Ertl,et al.  Coadsorption phases of CO and oxygen on Pd(111) studied by scanning tunneling microscopy , 2005 .

[6]  A. Stierle,et al.  A surface x-ray study of the structure and morphology of the oxidized Pd001 surface. , 2005, The Journal of chemical physics.

[7]  M. Scheffler,et al.  Density-functional theory study of the initial oxygen incorporation in Pd(111) , 2005, cond-mat/0501018.

[8]  H. Freund,et al.  The surface structure of Fe3O4(111) films as studied by CO adsorption , 2004 .

[9]  J. Frenken,et al.  Oscillatory CO oxidation on Pd(1 0 0) studied with in situ scanning tunneling microscopy , 2004 .

[10]  A. Stierle,et al.  Kinetic hindrance during the initial oxidation of Pd(100) at ambient pressures. , 2003, Physical review letters.

[11]  H. Over,et al.  Catalytic CO oxidation over ruthenium––bridging the pressure gap , 2003 .

[12]  T. Risse,et al.  Preparation and characterization of model catalysts: from ultrahigh vacuum to in situ conditions at the atomic dimension , 2003 .

[13]  J. Gustafson,et al.  The Pd(100)-(√5 x √5)R27º-O surface oxide revisited , 2003, cond-mat/0304107.

[14]  M Schmid,et al.  Two-dimensional oxide on Pd(111). , 2002, Physical review letters.

[15]  G. Zheng,et al.  The oxidation mechanism of Pd(100) , 2002 .

[16]  W. Ranke,et al.  Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers , 2002 .

[17]  E. Altman,et al.  The Reactivity of Surface Oxygen Phases on Pd(100) Toward Reduction by CO , 2002 .

[18]  H. Freund,et al.  Size Dependent Reaction Kinetics on Supported Model Catalysts: A Molecular Beam/IRAS Study of the CO Oxidation on Alumina-Supported Pd Particles , 2001 .

[19]  H. Freund,et al.  The CO oxidation kinetics on supported Pd model catalysts: A molecular beam/in situ time-resolved infrared reflection absorption spectroscopy study , 2001 .

[20]  H. Freund,et al.  A molecular beam/surface spectroscopy apparatus for the study of reactions on complex model catalysts , 2000 .

[21]  D. Dwyer,et al.  Kinetics of PdO formation and CO reduction on Pd(110) , 2000 .

[22]  C. Becker,et al.  Reaction between CO and a pre-adsorbed oxygen layer on supported palladium clusters , 2000 .

[23]  G. Zheng,et al.  The oxidation of Pd(111) , 2000 .

[24]  V. Zhdanov,et al.  Simulations of the reaction kinetics on nanometer supported catalyst particles , 2000 .

[25]  D. Goodman,et al.  Metal nanoclusters supported on metal oxide thin films: bridging the materials gap , 2000 .

[26]  Konrad Hayek,et al.  Surface and subsurface oxygen on Pd(111) , 2000 .

[27]  Claude R. Henry,et al.  Surface studies of supported model catalysts , 1998 .

[28]  G. Ertl,et al.  Handbook of Heterogeneous Catalysis , 1997 .

[29]  J. Geus,et al.  Adsorption of oxygen and surface oxide formation on Pd(111) and Pd foil studied with ellipsometry, LEED, AES and XPS , 1997 .

[30]  John Meurig Thomas Principles and practice of heterogeneous catalysis , 1996 .

[31]  D. Dwyer,et al.  XPS identification of the chemical state of subsurface oxygen in the OPd(110) system , 1996 .

[32]  Lundgren,et al.  Surface core-level shifts of some 4d-metal single-crystal surfaces: Experiments and ab initio calculations. , 1994, Physical review. B, Condensed matter.

[33]  Simmons,et al.  C(2 x 2) oxygen-induced core-level shifts and surface states of Pd(100). , 1994, Physical review. B, Condensed matter.

[34]  D. Goodman,et al.  An infrared and kinetic study of carbon monoxide oxidation on model silica-supported palladium catalysts from 10-9 to 15 Torr , 1993 .

[35]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths. III. Data for 15 inorganic compounds over the 50–2000 eV range , 1991 .

[36]  J. Yates,et al.  Adsorption kinetics and isotopic equilibration of oxygen adsorbed on the Pd(111) surface , 1989 .

[37]  P. Thiel,et al.  Oxygen on Pd(100): Order, reconstruction, and desorption , 1988 .

[38]  R. Imbihl,et al.  Adsorption of oxygen on a Pd(111) surface studied by high resolution electron energy loss spectroscopy (EELS) , 1986 .

[39]  F. Hoffmann,et al.  Infrared reflection-absorption spectroscopy of adsorbed molecules , 1983 .

[40]  S. Bader,et al.  LEED and ELS study of the initial oxidation of Pd(100) , 1982 .

[41]  A. Bradshaw,et al.  The chemisorption of carbon monoxide on palladium single crystal surfaces: IR spectroscopic evidence for localised site adsorption , 1978 .

[42]  G. Ertl,et al.  Interaction of NO and O2 with Pd(111) surfaces. I. , 1977 .

[43]  D. King,et al.  Reaction mechanism in chemisorption kinetics: nitrogen on the {100} plane of tungsten , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[44]  D. King,et al.  Molecular Beam Investigation of Adsorption Kinetics on Bulk Metal Targets: Nitrogen on Tungsten , 1972 .