Parameter Estimation in Hidden Markov Models With Intractable Likelihoods Using Sequential Monte Carlo

We propose sequential Monte Carlo-based algorithms for maximum likelihood estimation of the static parameters in hidden Markov models with an intractable likelihood using ideas from approximate Bayesian computation. The static parameter estimation algorithms are gradient-based and cover both offline and online estimation. We demonstrate their performance by estimating the parameters of three intractable models, namely the α-stable distribution, g-and-k distribution, and the stochastic volatility model with α-stable returns, using both real and synthetic data.

[1]  Rémi Munos,et al.  Sensitivity analysis in HMMs with application to likelihood maximization , 2009, NIPS.

[2]  Veronika Czellar,et al.  Tracking Beliefs: Accurate Methods for Approximate Bayesian Computation Filtering , 2012 .

[3]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[4]  R. Wilkinson Approximate Bayesian computation (ABC) gives exact results under the assumption of model error , 2008, Statistical applications in genetics and molecular biology.

[5]  J. Møller Discussion on the paper by Feranhead and Prangle , 2012 .

[6]  F. LeGland,et al.  Recursive estimation in hidden Markov models , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[7]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .

[8]  Gareth W. Peters,et al.  Likelihood-free Bayesian inference for α-stable models , 2012, Comput. Stat. Data Anal..

[9]  Syed Shahadat Hossain,et al.  Numerical Maximum Likelihood Estimation for the g-and-k Distribution Using Ranked Set Sample , 2010 .

[10]  Arnaud Doucet,et al.  Uniform Stability of a Particle Approximation of the Optimal Filter Derivative , 2011, SIAM J. Control. Optim..

[11]  L. Gerencsér,et al.  Recursive estimation of Hidden Markov Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[12]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[13]  Télécom ParisTech ONLINE SEQUENTIAL MONTE CARLO EM ALGORITHM , 2009 .

[14]  Marco J. Lombardi Indirect estimation of α-stable stochastic volatility models , 2005 .

[15]  Sumeetpal S. Singh,et al.  Forward Smoothing using Sequential Monte Carlo , 2010, 1012.5390.

[16]  N. Chopin A sequential particle filter method for static models , 2002 .

[17]  Durbin,et al.  Biological Sequence Analysis , 1998 .

[18]  Anthony S. Tay,et al.  Evaluating Density Forecasts , 1997 .

[19]  Arnaud Doucet,et al.  An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .

[20]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[21]  Sumeetpal S. Singh,et al.  Parameter Estimation for Hidden Markov Models with Intractable Likelihoods , 2011 .

[22]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[23]  S. A. Sisson,et al.  Likelihood-free Bayesian inference for alpha-stable models , 2009 .

[24]  A. Doucet,et al.  On-Line Parameter Estimation in General State-Space Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[25]  J. Felsenstein,et al.  A Hidden Markov Model approach to variation among sites in rate of evolution. , 1996, Molecular biology and evolution.

[26]  G. D. Rayner,et al.  Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions , 2002, Stat. Comput..

[27]  D. Pierre Forward Smoothing Using Sequential Monte Carlo , 2009 .

[28]  Thomas A. Dean,et al.  Asymptotic behaviour of approximate Bayesian estimators , 2011, 1105.3655.

[29]  N. Kantas,et al.  Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods , 2013, Methodology and Computing in Applied Probability.

[30]  Sumeetpal S. Singh,et al.  Filtering via approximate Bayesian computation , 2010, Statistics and Computing.

[31]  Sumeetpal S. Singh,et al.  Particle approximations of the score and observed information matrix in state space models with application to parameter estimation , 2011 .

[32]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[33]  F. Campillo,et al.  Convolution Particle Filter for Parameter Estimation in General State-Space Models , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[34]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[35]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[36]  Adam M. Johansen,et al.  A simple approach to maximum intractable likelihood estimation , 2013 .

[37]  Yves F. Atchad'e,et al.  Iterated filtering , 2009, 0902.0347.

[38]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[39]  Paul Fearnhead,et al.  Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .