An implicit updated lagrangian formulation for liquids with large surface energy

We present an updated Lagrangian discretization of surface tension forces for the simulation of liquids with moderate to extreme surface tension effects. The potential energy associated with surface tension is proportional to the surface area of the liquid. We design discrete forces as gradients of this energy with respect to the motion of the fluid over a time step. We show that this naturally allows for inversion of the Hessian of the potential energy required with the use of Newton's method to solve the systems of nonlinear equations associated with implicit time stepping. The rotational invariance of the surface tension energy makes it non-convex and we define a definiteness fix procedure as in [Teran et al. 2005]. We design a novel level-set-based boundary quadrature technique to discretize the surface area calculation in our energy based formulation. Our approach works most naturally with Particle-In-Cell [Harlow 1964] techniques and we demonstrate our approach with a weakly incompressible model for liquid discretized with the Material Point Method [Sulsky et al. 1994]. We show that our approach is essential for allowing efficient implicit numerical integration in the limit of high surface tension materials like liquid metals.

[1]  Christopher Batty,et al.  Tetrahedral Embedded Boundary Methods for Accurate and Flexible Adaptive Fluids , 2010, Comput. Graph. Forum.

[2]  Philippe Beaudoin,et al.  Particle-based viscoelastic fluid simulation , 2005, SCA '05.

[3]  Theodore Kim,et al.  Anisotropic elasticity for inversion-safety and element rehabilitation , 2019, ACM Trans. Graph..

[4]  Chenfanfu Jiang,et al.  The material point method for simulating continuum materials , 2016, SIGGRAPH Courses.

[5]  W. King,et al.  Water droplet impact on elastic superhydrophobic surfaces , 2016, Scientific Reports.

[6]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[7]  Martin Rumpf,et al.  Functional Thin Films on Surfaces , 2015, IEEE Transactions on Visualization and Computer Graphics.

[8]  Alexei A. Efros,et al.  Mirror mirror , 2014, ACM Trans. Graph..

[9]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[10]  Eitan Grinspun,et al.  Surface-only liquids , 2016, ACM Trans. Graph..

[11]  M. Gross,et al.  Physics-inspired topology changes for thin fluid features , 2010, ACM Trans. Graph..

[12]  Jessica K. Hodgins,et al.  A point-based method for animating incompressible flow , 2009, SCA '09.

[13]  Mathieu Desbrun,et al.  Power particles , 2015, ACM Trans. Graph..

[14]  Wolfgang Rauch,et al.  Accelerating Surface Tension Calculation in SPH via Particle Classification and Monte Carlo Integration , 2019, CGVC.

[15]  Theodore Kim,et al.  Analytic Eigensystems for Isotropic Distortion Energies , 2019, ACM Trans. Graph..

[16]  S. Popinet Numerical Models of Surface Tension , 2018 .

[17]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[18]  Markus H. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, ACM Trans. Graph..

[19]  Eitan Grinspun,et al.  A multi-scale model for simulating liquid-fabric interactions , 2018, ACM Trans. Graph..

[20]  J. Morris Simulating surface tension with smoothed particle hydrodynamics , 2000 .

[21]  Mathieu Desbrun,et al.  Kinetic-Based Multiphase Flow Simulation , 2020, IEEE Transactions on Visualization and Computer Graphics.

[22]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[23]  Ronald Fedkiw,et al.  A new incompressibility discretization for a hybrid particle MAC grid representation with surface tension , 2015, J. Comput. Phys..

[24]  Eitan Grinspun,et al.  Double bubbles sans toil and trouble , 2015, ACM Trans. Graph..

[25]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[26]  Ronald Fedkiw,et al.  Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid , 2012, J. Comput. Phys..

[27]  Francis H Harlow,et al.  The particle-in-cell method for numerical solution of problems in fluid dynamics , 1962 .

[28]  Huamin Wang,et al.  Enriching SPH simulation by approximate capillary waves , 2016, Symposium on Computer Animation.

[29]  R. Bridson,et al.  Matching fluid simulation elements to surface geometry and topology , 2010, ACM Trans. Graph..

[30]  Fabian Denner,et al.  Numerical time-step restrictions as a result of capillary waves , 2015, J. Comput. Phys..

[31]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[32]  Jihun Yu,et al.  Explicit Mesh Surfaces for Particle Based Fluids , 2012, Comput. Graph. Forum.

[33]  Chenfanfu Jiang,et al.  A material point method for viscoelastic fluids, foams and sponges , 2015, Symposium on Computer Animation.

[34]  Derek Nowrouzezahrai,et al.  Surface turbulence for particle-based liquid simulations , 2015, ACM Trans. Graph..

[35]  Jing Liu,et al.  Surface tension of liquid metal: role, mechanism and application , 2017 .

[36]  P. Taylor,et al.  Physical chemistry of surfaces , 1991 .

[37]  J. Hochstein,et al.  An implicit surface tension model , 1996 .

[38]  Xiaofeng Ren,et al.  Boundary Detection , 2014, Computer Vision, A Reference Guide.

[39]  R. Fedkiw,et al.  USING THE PARTICLE LEVEL SET METHOD AND A SECOND ORDER ACCURATE PRESSURE BOUNDARY CONDITION FOR FREE SURFACE FLOWS , 2003 .

[40]  Aamer Haque,et al.  Three-dimensional boundary detection for particle methods , 2007, J. Comput. Phys..

[41]  Jakob Andreas Bærentzen,et al.  Topology-adaptive interface tracking using the deformable simplicial complex , 2012, TOGS.

[42]  Chenfanfu Jiang,et al.  Hierarchical Optimization Time Integration for CFL-Rate MPM Stepping , 2020, ACM Trans. Graph..

[43]  Ronald Fedkiw,et al.  Codimensional surface tension flow on simplicial complexes , 2014, ACM Trans. Graph..

[44]  Eberhard Bänsch,et al.  Finite element discretization of the Navier–Stokes equations with a free capillary surface , 2001, Numerische Mathematik.

[45]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[46]  M. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, SIGGRAPH 2010.

[47]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[48]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[49]  Roberto F. Ausas,et al.  Variational formulations for surface tension, capillarity and wetting , 2011 .

[50]  Robert Bridson,et al.  Robust Topological Operations for Dynamic Explicit Surfaces , 2009, SIAM J. Sci. Comput..

[51]  Eftychios Sifakis,et al.  Simulation of complex nonlinear elastic bodies using lattice deformers , 2012, ACM Trans. Graph..

[52]  Gary A. Dilts,et al.  Moving least‐squares particle hydrodynamics II: conservation and boundaries , 2000 .

[53]  Eitan Grinspun,et al.  Multimaterial mesh-based surface tracking , 2014, ACM Trans. Graph..

[54]  James F. O'Brien,et al.  Simulating liquids and solid-liquid interactions with lagrangian meshes , 2013, TOGS.

[55]  Afonso Paiva,et al.  Boundary Detection in Particle‐based Fluids , 2016, Comput. Graph. Forum.

[56]  Matthias Teschner,et al.  Versatile surface tension and adhesion for SPH fluids , 2013, ACM Trans. Graph..

[57]  Eitan Grinspun,et al.  Discrete viscous sheets , 2012, ACM Trans. Graph..

[58]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[59]  Greg Turk,et al.  Fast viscoelastic behavior with thin features , 2008, ACM Trans. Graph..

[60]  Robert Bridson,et al.  MultiFLIP for energetic two-phase fluid simulation , 2012, TOGS.

[61]  Mark Sussman,et al.  A Stable and Efficient Method for Treating Surface Tension in Incompressible Two-Phase Flow , 2009, SIAM J. Sci. Comput..

[62]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[63]  S. Hysing,et al.  A new implicit surface tension implementation for interfacial flows , 2006 .

[64]  Matthias Müller,et al.  Fast and robust tracking of fluid surfaces , 2009, SCA '09.

[65]  Alex Jarauta,et al.  An implicit surface tension model for the analysis of droplet dynamics , 2018, J. Comput. Phys..

[66]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[67]  Nicolas Holzschuch,et al.  Example-Based Microstructure Rendering with Constant Storage , 2020, ACM Trans. Graph..

[68]  Jean-Philippe Pons,et al.  Generalized Surface Flows for Mesh Processing , 2007 .

[69]  Christopher Wojtan,et al.  Highly adaptive liquid simulations on tetrahedral meshes , 2013, ACM Trans. Graph..

[70]  Andreas Kolb,et al.  Consistent surface model for SPH-based fluid transport , 2013, SCA '13.

[71]  T. Hou,et al.  Removing the stiffness from interfacial flows with surface tension , 1994 .

[72]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, ACM Trans. Graph..

[73]  Kenny Erleben,et al.  Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes , 2014, IEEE Transactions on Visualization and Computer Graphics.

[74]  Renato Pajarola,et al.  Adaptive Sampling and Rendering of Fluids on the GPU , 2008, VG/PBG@SIGGRAPH.

[75]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[76]  Andrew M. Stuart,et al.  A First Course in Continuum Mechanics: Bibliography , 2008 .

[77]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[78]  Hongan Wang,et al.  Staggered meshless solid-fluid coupling , 2012, ACM Trans. Graph..

[79]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.