Zero-Sum Flows for Steiner Triple Systems

Given a 2-(v;k; ) design, S = (X;B), a zero-sum n-ow ofS is a map f :B! f 1;:::; (n 1)g such that for any point x2 X, the sum of f around all the blocks incident with x is zero. It has been conjectured that every Steiner triple system, STS(v), on v points (v > 7) admits a zero-sum 3-ow. We show that for every pair ( v; ), for which a triple system, TS(v; ) exists, there exists one which has a zero-sum 3-ow,

[1]  Nabil Shalaby,et al.  Cyclic block designs with block size 3 from Skolem-type sequences , 2012, Des. Codes Cryptogr..

[2]  Marco Buratti,et al.  2-Starters, Graceful Labelings, and a Doubling Construction for the Oberwolfach Problem , 2012 .

[3]  Tao-Ming Wang,et al.  Zero-Sum Flow Numbers of Regular Graphs , 2012, FAW-AAIM.

[4]  Marco Buratti,et al.  On sharply vertex transitive 2-factorizations of the complete graph , 2005, J. Comb. Theory, Ser. A.

[5]  A. Rosa,et al.  Solutions to the Oberwolfach problem for orders 18 to 40 , 2008 .

[6]  Editors , 1986, Brain Research Bulletin.

[7]  Victor Scharaschkin,et al.  Complete solutions to the Oberwolfach problem for an infinite set of orders , 2009, J. Comb. Theory, Ser. B.

[8]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[9]  Marco Buratti,et al.  1-Rotational k-Factorizations of the Complete Graph and New Solutions to the Oberwolfach Problem , 2008 .

[10]  Arnold Emch Triple and multiple systems, their geometric configurations and groups , 1929 .

[11]  Roland Häggkvist,et al.  A Lemma on Cycle Decompositions , 1985 .

[12]  Saieed Akbari,et al.  Zero-Sum Flows in Regular Graphs , 2010, Graphs Comb..

[13]  H. Hanani The Existence and Construction of Balanced Incomplete Block Designs , 1961 .

[14]  Tommaso Traetta,et al.  A complete solution to the two-table Oberwolfach problems , 2013, J. Comb. Theory, Ser. A.

[15]  Saieed Akbari,et al.  Zero-sum flows in designs† , 2011 .

[16]  Charles J. Colbourn,et al.  Hanani triple systems , 1993 .

[17]  Douglas R. Stinson,et al.  The Oberwolfach problem and factors of uniform odd length cycles , 1989, J. Comb. Theory, Ser. A.

[18]  C. Lindner,et al.  Design Theory, Second Edition , 2008 .

[19]  Dean G. Hoffman,et al.  The existence of Ck-factorizations of K2n-F , 1991, Discret. Math..

[20]  Brian Alspach,et al.  Some observations on the oberwolfach problem , 1985, J. Graph Theory.

[21]  Charles J. Colbourn,et al.  Cyclic Block Designs With Block Size 3 , 1981, Eur. J. Comb..

[22]  Saieed Akbari,et al.  On zero-sum 6-flows of graphs , 2009 .

[23]  Anthony J. W. Hilton,et al.  Some Results on the Oberwolfach Problem , 2001 .

[24]  M. A. Ollis Some Cyclic Solutions to the Three Table Oberwolfach Problem , 2005, Electron. J. Comb..

[25]  A generalization of 0-sum flows in graphs , 2013 .

[26]  Hanfried Lenz,et al.  Design theory , 1985 .

[27]  Darryn E. Bryant On the Oberwolfach Problem with Two Similar Length Cycles , 2001, Graphs Comb..

[28]  Darryn E. Bryant,et al.  On bipartite 2‐factorizations of kn − I and the Oberwolfach problem , 2011, J. Graph Theory.