Unleashing the Power of Information Graphs

Information graphs are generic graphs that model different types of information through nodes and edges. Knowledge graphs are the most common type of information graphs in which nodes represent entities and edges represent relationships among them. In this paper, we argue that exploitation of information graphs can lead into novel query answering capabilities that go beyond the existing capabilities of keyword search, and focus on one of them, namely, exemplar queries. Exemplar queries is a recently introduced paradigm that treats a user query as an example from the desired result set. In this paper, we describe the foundations of exemplar queries and the significant role of information graphs, and we present several applications and relevant research directions.

[1]  Nick Koudas,et al.  Interactive query refinement , 2009, EDBT '09.

[2]  Fei Song,et al.  Knowledge-Based Approaches to Query Expansion in Information Retrieval , 1996, Canadian Conference on AI.

[3]  Prasenjit Mitra,et al.  Query suggestions in the absence of query logs , 2011, SIGIR.

[4]  Jack Minker,et al.  Multiple Query Processing in Deductive Databases using Query Graphs , 1986, VLDB.

[5]  Ni Lao,et al.  Fast query execution for retrieval models based on path-constrained random walks , 2010, KDD.

[6]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[7]  Philip S. Yu,et al.  Graph indexing: a frequent structure-based approach , 2004, SIGMOD '04.

[8]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[9]  Yuli Ye,et al.  Max-Sum diversification, monotone submodular functions and dynamic updates , 2012, PODS '12.

[10]  Chao Liu,et al.  Click chain model in web search , 2009, WWW '09.

[11]  Themis Palpanas,et al.  Entity ranking using click-log information , 2013, Intell. Data Anal..

[12]  Ramez Elmasri,et al.  Querying Knowledge Graphs by Example Entity Tuples , 2013, IEEE Transactions on Knowledge and Data Engineering.

[13]  Jun Zhao,et al.  Collective entity linking in web text: a graph-based method , 2011, SIGIR.

[14]  Themis Palpanas,et al.  Searching with XQ: the exemplar query search engine , 2014, SIGMOD Conference.

[15]  Gerhard Weikum,et al.  NAGA: Searching and Ranking Knowledge , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[16]  Tru H. Cao,et al.  Ontology-Based Query Expansion with Latently Related Named Entities for Semantic Text Search , 2018, Advances in Intelligent Information and Database Systems.

[17]  Ihab F. Ilyas,et al.  Interpreting keyword queries over web knowledge bases , 2012, CIKM '12.

[18]  Gautam Das,et al.  A Probabilistic Optimization Framework for the Empty-Answer Problem , 2013, Proc. VLDB Endow..

[19]  Xuelong Li,et al.  A survey of graph edit distance , 2010, Pattern Analysis and Applications.

[20]  Sonia Bergamaschi,et al.  A Hidden Markov Model Approach to Keyword-Based Search over Relational Databases , 2011, ER.

[21]  Matteo Lissandrini,et al.  Keyword Query to Graph Query , 2003 .

[22]  Luca Becchetti,et al.  An optimization framework for query recommendation , 2010, WSDM '10.

[23]  Nan Li,et al.  Neighborhood based fast graph search in large networks , 2011, SIGMOD '11.

[24]  John Mylopoulos,et al.  Goals in Social Media, information retrieval and intelligent agents , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[25]  Themis Palpanas,et al.  Exemplar Queries: Give me an Example of What You Need , 2014, Proc. VLDB Endow..

[26]  Sourav S. Bhowmick,et al.  Efficient algorithms for generalized subgraph query processing , 2012, CIKM '12.

[27]  Sonia Bergamaschi,et al.  Keyword search over relational databases: a metadata approach , 2011, SIGMOD '11.

[28]  Francesco Bonchi,et al.  Query reformulation mining: models, patterns, and applications , 2011, Information Retrieval.