A numerical study on the impact of fin length arrangement and material on the melting of PCM in a rectangular enclosure

[1]  Yan Yang,et al.  Energy storage performance improvement of phase change materials-based triplex-tube heat exchanger (TTHX) using liquid–solid interface-informed fin configurations , 2023, Applied Energy.

[2]  Burak Izgi Effect of fins on melting of phase change material in a closed vertical cylinder under microgravity , 2023, Applied Thermal Engineering.

[3]  M. Haddar,et al.  Thermal Performances of Finned Heat Sink Filled with Nano-Enhanced Phase Change Materials: Design Optimization and Parametric Study , 2023, SSRN Electronic Journal.

[4]  Qing Li,et al.  Numerical investigation of thermal management performances in a solar photovoltaic system by using the phase change material coupled with bifurcated fractal fins , 2022, Journal of Energy Storage.

[5]  M. Izadi,et al.  Analysis of applying fin for charging process of phase change material inside H-shaped thermal storage , 2022, International Communications in Heat and Mass Transfer.

[6]  F. Selimefendigil,et al.  Effects of flexible fins on melting process in a phase change material filled circular cavity , 2022, Journal of Energy Storage.

[7]  Qicheng Chen,et al.  Phase change material heat transfer enhancement in latent heat thermal energy storage unit with single fin: Comprehensive effect of position and length , 2021 .

[8]  M. Altanji,et al.  Proposing novel “L” shaped fin to boost the melting performance of a vertical PCM enclosure , 2021, Case Studies in Thermal Engineering.

[9]  Akshaykumar N. Desai,et al.  Novel inverted fin configurations for enhancing the thermal performance of PCM based thermal control unit: A numerical study , 2021 .

[10]  M. Irfan,et al.  Melting performance enhancement of a phase change material using branched fins and nanoparticles for energy storage applications , 2021 .

[11]  F. Nicolleau,et al.  Enhancing the thermal performance of PCM in a shell and tube latent heat energy storage system by utilizing innovative fins , 2021 .

[12]  Birlie Fekadu,et al.  Enhancement of phase change materials melting performance in a rectangular enclosure under different inclination angle of fins , 2021 .

[13]  Mohammed N. Alghamdi,et al.  Combined effect of using porous media and nano-particle on melting performance of PCM filled enclosure with triangular double fins , 2021 .

[14]  L. Rocha,et al.  Design of fin structures for phase change material (PCM) melting process in rectangular cavities , 2021 .

[15]  B. Kok Examining effects of special heat transfer fins designed for the melting process of PCM and Nano-PCM , 2020 .

[16]  Zu-Guo Shen,et al.  Effect of fin material on PCM melting in a rectangular enclosure , 2020 .

[17]  M. Rahimi,et al.  Experimental analysis of Transient melting process in a horizontal cavity with different configurations of fins , 2020 .

[18]  V. Martin,et al.  Numerical investigation of melting in a cavity with vertically oriented fins , 2019, Applied Energy.

[19]  B. Kamkari,et al.  Investigation of the effect of inclination angle on the melting enhancement of phase change material in finned latent heat thermal storage units , 2019, Applied Thermal Engineering.

[20]  F. Duan,et al.  Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection , 2018, International Journal of Heat and Mass Transfer.

[21]  Tapas K. Mallick,et al.  Optimization of finned solar photovoltaic phase change material (finned pv pcm) system , 2018, International Journal of Thermal Sciences.

[22]  X. Duan,et al.  Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit , 2018 .

[23]  D. Groulx,et al.  Influence of fin size and distribution on solid-liquid phase change in a rectangular enclosure , 2018 .

[24]  F. Duan,et al.  Non-uniform heat transfer suppression to enhance PCM melting by angled fins , 2018 .

[25]  B. Kamkari,et al.  Numerical simulation and experimental verification of constrained melting of phase change material in inclined rectangular enclosures , 2017 .

[26]  Chuan Zhang,et al.  Numerical analysis on the energy storage efficiency of phase change material embedded in finned metal foam with graded porosity , 2017 .

[27]  H. Shokouhmand,et al.  Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins , 2014 .

[28]  F. Bruno,et al.  Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure , 2014 .

[29]  Lei Wang,et al.  Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules , 2014 .

[30]  Georgios Kokogiannakis,et al.  Thermal management systems for Photovoltaics (PV) installations: A critical review , 2013 .

[31]  Ashley F. Emery,et al.  Opportunities for Ice Storage to Provide Ancillary Services to Power Grids Incorporating Wind Turbine Generation , 2012 .

[32]  Yue-Tzu Yang,et al.  Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change material , 2012 .

[33]  Amir Faghri,et al.  Enhancement of PCM melting in enclosures with horizontally-finned internal surfaces , 2011 .

[34]  Ibrahim Dincer,et al.  Heat transfer and thermal management of electric vehicle batteries with phase change materials , 2011 .

[35]  Francis Agyenim,et al.  Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system , 2011 .

[36]  U. Stritih,et al.  Experimental investigation of energy saving in buildings with PCM cold storage , 2010 .

[37]  Neil Hewitt,et al.  The development of a finned phase change material (PCM) storage system to take advantage of off-peak electricity tariff for improvement in cost of heat pump operation , 2010 .

[38]  Francis Agyenim,et al.  A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) , 2010 .

[39]  F. Kuznik,et al.  Experimental assessment of a phase change material for wall building use , 2009 .

[40]  Jinyue Yan,et al.  Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride , 2009 .

[41]  L. Cabeza,et al.  Utilization of phase change materials in solar domestic hot water systems , 2009 .

[42]  Zhong Xin,et al.  Thermal properties of paraffin based composites containing multi-walled carbon nanotubes , 2009 .

[43]  Metin Gumus,et al.  Reducing cold-start emission from internal combustion engines by means of thermal energy storage system , 2009 .

[44]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[45]  G. Ziskind,et al.  Numerical investigation of a PCM-based heat sink with internal fins , 2005 .

[46]  Amar M. Khudhair,et al.  A review on phase change energy storage: materials and applications , 2004 .

[47]  Amir Faghri,et al.  Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube , 1996 .