Band filling with free charge carriers in organometal halide perovskites

Femtosecond transient absorption spectroscopy measurements indicate that the dominant relaxation pathway for excited states in perovskite materials is by recombination of free electrons and holes.

[1]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[2]  Alex K.-Y. Jen,et al.  High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. , 2013, Nano letters.

[3]  P. Kamat,et al.  Exciton recombination dynamics in CdSe nanowires: bimolecular to three-carrier Auger kinetics. , 2006, Nano letters.

[4]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[5]  David B. Mitzi,et al.  Design, Structure, and Optical Properties of Organic-Inorganic Perovskites Containing an Oligothiophene Chromophore. , 1999, Inorganic chemistry.

[6]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[7]  G. Cohen,et al.  Burstein-Moss shift of n-doped In{sub 0.53}Ga{sub 0.47}As/InP , 2001 .

[8]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[9]  T. Moss The Interpretation of the Properties of Indium Antimonide , 1954 .

[10]  Patricia Yang Liu,et al.  Effects of free electrons and quantum confinement in ultrathin ZnO films: a comparison between undoped and Al-doped ZnO. , 2013, Optics express.

[11]  Kai Zhu,et al.  Charge Transport and Recombination in Perovskite (CH3NH3)PbI3 Sensitized TiO2 Solar Cells , 2013 .

[12]  D. Leighton,et al.  Rate limiting interfacial hole transfer in Sb2S3 solid-state solar cells , 2014 .

[13]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[14]  P. Frantsuzov,et al.  Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles , 2010, Proceedings of the National Academy of Sciences.

[15]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[16]  Gary Hodes,et al.  Perovskite-Based Solar Cells , 2013, Science.

[17]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[18]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[19]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[20]  Hiroshi Segawa,et al.  Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis. , 2013, The journal of physical chemistry letters.

[21]  E. Burstein Anomalous Optical Absorption Limit in InSb , 1954 .

[22]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[23]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[24]  David B. Mitzi,et al.  Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3 , 1995 .

[25]  Kangning Liang,et al.  Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique , 1998 .

[26]  Phillips,et al.  Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature. , 1992, Physical review. B, Condensed matter.

[27]  E. Burstein Exciton-polaritons in nonlinear optical phenomena in semiconductors: An overview of major developments , 1990 .

[28]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[29]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[30]  H. Hosono,et al.  Observation of carrier dynamics in CdO thin films by excitation with femtosecond laser pulse , 2003 .

[31]  Takashi Kondo,et al.  Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 , 2003 .

[32]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.

[33]  Tetsuo Tsutsui,et al.  Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound , 1996 .

[34]  I. Hamberg,et al.  Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows , 1986 .

[35]  Stefan Schmitt-Rink,et al.  Ionization of the Direct-Gap Exciton in Photoexcited Germanium , 1983 .

[36]  T. M. Rice,et al.  Trions, molecules and excitons above the Mott density in Ge , 1977 .

[37]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[38]  François Hache,et al.  Time‐resolved measurements of carrier recombination in experimental semiconductor‐doped glasses: Confirmation of the role of Auger recombination , 1993 .

[39]  J. Teuscher,et al.  Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells , 2014, Nature Photonics.

[40]  N. Dimitrijević,et al.  Dynamic Burstein-Moss shift in semiconductor colloids , 1989 .

[41]  N. Miura,et al.  Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 , 1994 .

[42]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[43]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[44]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[45]  S. Hickey,et al.  Photoelectrochemical Studies of CdS Nanoparticle Modified Electrodes: Absorption and Photocurrent Investigations , 2000 .

[46]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[47]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[48]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.