On the formal equivalence of the TAP and thermodynamic methods in the SK model

We revisit two classic Thouless–Anderson–Palmer (TAP) studies of the Sherrington–Kirkpatrick model (Bray A J and Moore M A 1980 J. Phys. C: Solid State Phys. 13 L469; De Dominicis C and Young A P 1983 J. Phys. A: Math. Gen. 16 2063). By using the Becchi–Rouet–Stora–Tyutin (BRST) supersymmetry, we prove the general equivalence of TAP and replica partition functions, and show that the annealed calculation of the TAP complexity is formally identical to the quenched thermodynamic calculation of the free energy at one step level of replica symmetry breaking. The complexity we obtain by means of the BRST symmetry turns out to be considerably smaller than the previous non-symmetric value.

[1]  J. Zinn-Justin Quantum Field Theory and Critical Phenomena , 2002 .

[2]  G. Biroli,et al.  From inherent structures to pure states: Some simple remarks and examples , 1999, cond-mat/9912061.

[3]  J. P. Garrahan,et al.  Quenched complexity of the mean-field p-spin spherical model with external magnetic field , 1998, cond-mat/9807222.

[4]  G. Parisi,et al.  STATIONARY POINTS OF THE THOULESS-ANDERSON-PALMER FREE ENERGY , 1998 .

[5]  Andrea Crisanti,et al.  Thouless-Anderson-Palmer Approach to the Spherical p-Spin Spin Glass Model , 1995 .

[6]  G. Parisi,et al.  On the Number of Metastable States in Spin Glasses , 1995, cond-mat/9506049.

[7]  Monasson,et al.  Structural glass transition and the entropy of the metastable states. , 1995, Physical review letters.

[8]  G. Parisi,et al.  Mean-field equations for spin models with orthogonal interaction matrices , 1995, cond-mat/9503009.

[9]  M. A. Virasoro,et al.  Barriers and metastable states as saddle points in the replica approach , 1993 .

[10]  A. Crisanti,et al.  The sphericalp-spin interaction spin glass model: the statics , 1992 .

[11]  J. Kurchan,et al.  Replica trick to calculate means of absolute values: applications to stochastic equations , 1991 .

[12]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[13]  A. Bray,et al.  Weighted averages of TAP solutions and Parisi's q(x) , 1984 .

[14]  A P Young,et al.  Weighted averages and order parameters for the infinite range Ising spin glass , 1983 .

[15]  G. Parisi,et al.  Supersymmetric field theories and stochastic differential equations , 1982 .

[16]  A. Bray,et al.  Metastable states in the solvable spin glass model , 1981 .

[17]  Stephen A Roberts,et al.  Metastable states and innocent replica theory in an Ising spin glass , 1981 .

[18]  M A Moore,et al.  Broken replica symmetry and metastable states in spin glasses , 1980 .

[19]  Henri Orland,et al.  White and weighted averages over solutions of Thouless Anderson Palmer equations for the Sherrington Kirkpatrick spin glass , 1980 .

[20]  A. Bray,et al.  Metastable states in spin glasses , 1980 .

[21]  G. Parisi A sequence of approximated solutions to the S-K model for spin glasses , 1980 .

[22]  G. Parisi Toward a mean field theory for spin glasses , 1979 .

[23]  Giorgio Parisi,et al.  Random Magnetic Fields, Supersymmetry, and Negative Dimensions , 1979 .

[24]  S. Kirkpatrick,et al.  Infinite-ranged models of spin-glasses , 1978 .

[25]  R. Palmer,et al.  Solution of 'Solvable model of a spin glass' , 1977 .

[26]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[27]  S. Edwards,et al.  Theory of spin glasses , 1975 .

[28]  R. Stora,et al.  The Abelian Higgs-Kibble Model. Unitarity of the S Operator , 1974 .