Porous piezoceramics: theory, technology, and properties

A comprehensive review of porosity origin, microstructure peculiarities, fabrication methods, and mathematical models, as well as systematic experimental data for different porous piezoceramics with 3-0/3-3 connectivity is presented. New families of porous piezoceramics based on lead zirconate titanate (PZT), lead titanate, lead metaniobate, and sodium-potassium niobate compositions, with properties combining better parameters of PZT, PN-type ceramics, and 1-3 composites are introduced. Piezoelectric resonance analysis methods for automatic iterative evaluation of complex material parameters and the full sets of complex constants for different porous piezoceramics are presented. Numerical FEM calculations were critically compared with the results of various approximated formulas, unit cell models, and experimental data for different porous piezoceramics. Microstructural and physical mechanisms of losses and dispersion in porous piezoceramics, as well as technological aspects of their large-scale manufacture and application in ultrasonic devices were considered. The results of SEM microstructure analysis and microstructure-properties interrelations were discussed. Recent advances in fabrication methods for nano- and microporous piezoceramics and ceramic piezocomposites were discussed.

[1]  A. Rybyanets,et al.  Ceramic piezocomposites: Modeling, technology, and characterization , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[2]  A. Rybyanets Novel approach for fabrication of ceramic matrix piezocomposites , 2010, 2010 IEEE International Symposium on the Applications of Ferroelectrics (ISAF).

[3]  A. Rybianets New “Damped by Scattering” Ceramic Piezocomposites with Extremally Low QMValues , 2007 .

[4]  A. Nasedkin,et al.  Complete Characterization of Porous Piezoelectric Ceramics Properties Including Losses and Dispersion , 2007 .

[5]  R. Tasker,et al.  Automatic Iterative Evaluation of Complex Material Constants of Highly Attenuating Piezocomposites , 2007 .

[6]  A. Nasedkin,et al.  Different approaches to finite element modeling of effective moduli of porous piezoceramics with 3-3 (3-0) connectivity , 2005, IEEE Ultrasonics Symposium, 2005..

[7]  L. Tran-Huu-Hue,et al.  New low acoustic impedance piezoelectric material for broadband transducer applications , 2004, IEEE Ultrasonics Symposium, 2004.

[8]  L. Pardo,et al.  Method for Obtaining the Full Set of Linear Electric, Mechanical, and Electromechanical Coefficients and All Related Losses of a Piezoelectric Ceramic , 2004 .

[9]  A. V. Turik,et al.  New Micro Structural Design Concept for Polycrystalline Composite Materials , 2004 .

[10]  A. V. Turik,et al.  Lead Titanate and Lead Metaniobate Porous Ferroelectric Ceramics , 2004 .

[11]  C. Bowen,et al.  Porous PZT ceramics for receiving transducers , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[12]  Stewart Sherrit,et al.  Complete matrix of the piezoelectric, dielectric, and elastic material constants of 1-3 piezoelectric ceramic/polymer composites , 1997, Smart Materials, Nano-, and Micro- Smart Systems.

[13]  Stewart Sherrit,et al.  Complete characterization of the piezoelectric, dielectric, and elastic properties of Motorola PZT 3203 HD, including losses and dispersion , 1997, Medical Imaging.

[14]  S. Lopatin,et al.  Theoretical and experimental investigation of porous PZT ceramics , 1996 .

[15]  C. Lee,et al.  The Characterization of Porous Solids from Gas Adsorption Measurements , 1995 .

[16]  D. Hirschfeld,et al.  Processing of Porous Oxide Ceramics , 1995 .

[17]  R. Rice The Porosity Dependence of Physical Properties of Materials: A Summary Review , 1995 .

[18]  L. Pardo,et al.  Automatic determination of complex constants of piezoelectric lossy materials in the radial mode , 1995 .

[19]  C. Nan Effective‐medium theory of piezoelectric composites , 1994 .

[20]  N. Seaton,et al.  Determination of the connectivity of porous solids from nitrogen sorption measurements—III. Solids containing large mesopores , 1994 .

[21]  B. Jimenez,et al.  Automatic iterative evaluation of complex material constants in piezoelectric ceramics , 1994 .

[22]  N. Seaton,et al.  Analysis of Sorption Hysteresis in Mesoporous Solids Using a Pore Network Model , 1993 .

[23]  Stewart Sherrit,et al.  PdP135. Nun-iterative evaluation of the real and imaginary material constants of piezoelectric resonators , 1992 .

[24]  N. Ramakrishnan,et al.  Effective elastic moduli of porous solids , 1990 .

[25]  K. Hikita,et al.  Piezoelectric properties of the porous PZT and the porous PZT composite with silicone rubber , 1983 .

[26]  H. Banno,et al.  Recent developments of piezoelectric ceramic products and composites of synthetic rubber and piezoelectric ceramic particles , 1983 .

[27]  D. Farin,et al.  Chemistry in noninteger dimensions between two and three. II: Fractal surfaces of adsorbents , 1983 .

[28]  R. Newnham,et al.  Piezoelectric 3–3 composites , 1982 .

[29]  G. C. Wall,et al.  The determination of pore-size distributions from sorption isotherms and mercury penetration in interconnected pores: The application of percolation theory , 1981 .

[30]  J. V. Biggers,et al.  Simplified fabrication of PZT/polymer composites , 1979 .

[31]  J. G. Smits,et al.  Iterative Method for Accurate Determination of the Real and Imaginary Parts of the Materials Coefficients of Piezoelectric Ceramics , 1976, IEEE Transactions on Sonics and Ultrasonics.

[32]  Masakazu Marutake,et al.  A Calculation of Physical Constants of Ceramic Barium Titanate , 1956 .

[33]  Karl Willy Wagner,et al.  Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen , 1914 .

[34]  A. Nasedkin,et al.  Porous ferroelectric ceramics: theory, experiment and applications , 2007 .

[35]  Igor Nudelman,et al.  Optimization of finite element models for porous ceramic piezoelements by piezoelectric resonance analysis method , 2007 .

[36]  Igor Nudelman,et al.  Simulation of ultrasonic waves propagation in inhomogeneous anisotropic ceramic composites , 2007 .

[37]  R. Rice Grain size and porosity dependence of ceramic fracture energy and toughness at 22 °C , 1996, Journal of Materials Science.

[38]  T. Lupeiko,et al.  PROPERTIES OF POROUS PIEZOELECTRIC LEAD ZIRCONATE TITANATE CERAMICS , 1991 .

[39]  K. Lubitz,et al.  Dielectric, elastic and piezoelectric properties of porous PZT ceramics , 1986 .

[40]  A. S. Bhalla,et al.  Ferroelectric ceramic-plastic composites for piezoelectric and pyroelectric applications , 1980 .

[41]  R. Holland,et al.  Representation of Dielectric, Elastic, and Piezoelectric Losses by Complex Coefficients , 1967, IEEE Transactions on Sonics and Ultrasonics.

[42]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[43]  R. Tasker,et al.  Impedance Spectroscopy Characterization of Highly Attenuating Piezocomposites , 2022 .