Porous piezoceramics: theory, technology, and properties
暂无分享,去创建一个
[1] A. Rybyanets,et al. Ceramic piezocomposites: Modeling, technology, and characterization , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[2] A. Rybyanets. Novel approach for fabrication of ceramic matrix piezocomposites , 2010, 2010 IEEE International Symposium on the Applications of Ferroelectrics (ISAF).
[3] A. Rybianets. New “Damped by Scattering” Ceramic Piezocomposites with Extremally Low QMValues , 2007 .
[4] A. Nasedkin,et al. Complete Characterization of Porous Piezoelectric Ceramics Properties Including Losses and Dispersion , 2007 .
[5] R. Tasker,et al. Automatic Iterative Evaluation of Complex Material Constants of Highly Attenuating Piezocomposites , 2007 .
[6] A. Nasedkin,et al. Different approaches to finite element modeling of effective moduli of porous piezoceramics with 3-3 (3-0) connectivity , 2005, IEEE Ultrasonics Symposium, 2005..
[7] L. Tran-Huu-Hue,et al. New low acoustic impedance piezoelectric material for broadband transducer applications , 2004, IEEE Ultrasonics Symposium, 2004.
[8] L. Pardo,et al. Method for Obtaining the Full Set of Linear Electric, Mechanical, and Electromechanical Coefficients and All Related Losses of a Piezoelectric Ceramic , 2004 .
[9] A. V. Turik,et al. New Micro Structural Design Concept for Polycrystalline Composite Materials , 2004 .
[10] A. V. Turik,et al. Lead Titanate and Lead Metaniobate Porous Ferroelectric Ceramics , 2004 .
[11] C. Bowen,et al. Porous PZT ceramics for receiving transducers , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[12] Stewart Sherrit,et al. Complete matrix of the piezoelectric, dielectric, and elastic material constants of 1-3 piezoelectric ceramic/polymer composites , 1997, Smart Materials, Nano-, and Micro- Smart Systems.
[13] Stewart Sherrit,et al. Complete characterization of the piezoelectric, dielectric, and elastic properties of Motorola PZT 3203 HD, including losses and dispersion , 1997, Medical Imaging.
[14] S. Lopatin,et al. Theoretical and experimental investigation of porous PZT ceramics , 1996 .
[15] C. Lee,et al. The Characterization of Porous Solids from Gas Adsorption Measurements , 1995 .
[16] D. Hirschfeld,et al. Processing of Porous Oxide Ceramics , 1995 .
[17] R. Rice. The Porosity Dependence of Physical Properties of Materials: A Summary Review , 1995 .
[18] L. Pardo,et al. Automatic determination of complex constants of piezoelectric lossy materials in the radial mode , 1995 .
[19] C. Nan. Effective‐medium theory of piezoelectric composites , 1994 .
[20] N. Seaton,et al. Determination of the connectivity of porous solids from nitrogen sorption measurements—III. Solids containing large mesopores , 1994 .
[21] B. Jimenez,et al. Automatic iterative evaluation of complex material constants in piezoelectric ceramics , 1994 .
[22] N. Seaton,et al. Analysis of Sorption Hysteresis in Mesoporous Solids Using a Pore Network Model , 1993 .
[23] Stewart Sherrit,et al. PdP135. Nun-iterative evaluation of the real and imaginary material constants of piezoelectric resonators , 1992 .
[24] N. Ramakrishnan,et al. Effective elastic moduli of porous solids , 1990 .
[25] K. Hikita,et al. Piezoelectric properties of the porous PZT and the porous PZT composite with silicone rubber , 1983 .
[26] H. Banno,et al. Recent developments of piezoelectric ceramic products and composites of synthetic rubber and piezoelectric ceramic particles , 1983 .
[27] D. Farin,et al. Chemistry in noninteger dimensions between two and three. II: Fractal surfaces of adsorbents , 1983 .
[28] R. Newnham,et al. Piezoelectric 3–3 composites , 1982 .
[29] G. C. Wall,et al. The determination of pore-size distributions from sorption isotherms and mercury penetration in interconnected pores: The application of percolation theory , 1981 .
[30] J. V. Biggers,et al. Simplified fabrication of PZT/polymer composites , 1979 .
[31] J. G. Smits,et al. Iterative Method for Accurate Determination of the Real and Imaginary Parts of the Materials Coefficients of Piezoelectric Ceramics , 1976, IEEE Transactions on Sonics and Ultrasonics.
[32] Masakazu Marutake,et al. A Calculation of Physical Constants of Ceramic Barium Titanate , 1956 .
[33] Karl Willy Wagner,et al. Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen , 1914 .
[34] A. Nasedkin,et al. Porous ferroelectric ceramics: theory, experiment and applications , 2007 .
[35] Igor Nudelman,et al. Optimization of finite element models for porous ceramic piezoelements by piezoelectric resonance analysis method , 2007 .
[36] Igor Nudelman,et al. Simulation of ultrasonic waves propagation in inhomogeneous anisotropic ceramic composites , 2007 .
[37] R. Rice. Grain size and porosity dependence of ceramic fracture energy and toughness at 22 °C , 1996, Journal of Materials Science.
[38] T. Lupeiko,et al. PROPERTIES OF POROUS PIEZOELECTRIC LEAD ZIRCONATE TITANATE CERAMICS , 1991 .
[39] K. Lubitz,et al. Dielectric, elastic and piezoelectric properties of porous PZT ceramics , 1986 .
[40] A. S. Bhalla,et al. Ferroelectric ceramic-plastic composites for piezoelectric and pyroelectric applications , 1980 .
[41] R. Holland,et al. Representation of Dielectric, Elastic, and Piezoelectric Losses by Complex Coefficients , 1967, IEEE Transactions on Sonics and Ultrasonics.
[42] D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .
[43] R. Tasker,et al. Impedance Spectroscopy Characterization of Highly Attenuating Piezocomposites , 2022 .