Infinite Linear Programs

We consider infinite linear programs, that is, linear programs with an infinite number of variables and constraints. The analysis of infinite linear programs is quite challenging due to the fact that many of the fundamental properties of finite-dimensional linear programming fall apart in infinite-dimensional spaces. We discuss the challenges in extending such fundamental concepts as basic feasible solutions and duality theory to infinite linear programs and the methods used to overcome these challenges. We survey the two main classes of infinite linear programs, countable infinite linear programs and continuous linear programs, and discuss the motivating applications of them. Keywords: countable infinite linear program; continuous linear program; finite-dimensional truncation; finite-dimensional discretization; continuous-time network flow problem

[1]  Richard C. Grinold,et al.  Symmetric Duality for Continuous Linear Programs , 1970 .

[2]  J. C. Bean,et al.  A Dynamic Infinite Horizon Replacement Economy Decision Model , 1984 .

[3]  S. Ito,et al.  Inexact primal-dual interior point iteration for linear programs in function spaces , 1995, Comput. Optim. Appl..

[4]  Robert L. Smith,et al.  Solving Nonstationary Infinite Horizon Dynamic Optimization Problems , 2000 .

[5]  Edward J. Anderson,et al.  A continuous-time network simplex algorithm , 1989, Networks.

[6]  E. Anderson,et al.  Some Properties of a Class of Continuous Linear Programs , 1983 .

[7]  Malcolm Craig Pullan Convergence of a General Class of Algorithms for Separated Continuous Linear Programs , 2000, SIAM J. Optim..

[8]  R Bellman,et al.  Bottleneck Problems and Dynamic Programming. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Joseph J. M. Evers,et al.  A Duality Theory for Infinite-Horizon Optimization of Concave Input/Ouput Processes , 1983, Math. Oper. Res..

[10]  Stephen A. Clark An Infinite-Dimensional LP Duality Theorem , 2003, Math. Oper. Res..

[11]  Duality overlap in infinite linear programs , 1973 .

[12]  Bruce E. Hajek,et al.  Optimal dynamic routing in communication networks with continuous traffic , 1982, 1982 21st IEEE Conference on Decision and Control.

[13]  Robert L. Smith,et al.  Duality in infinite dimensional linear programming , 1992, Math. Program..

[14]  Richard Grinold,et al.  Finite horizon approximations of infinite horizon linear programs , 1977, Math. Program..

[15]  Éva Tardos,et al.  Efficient continuous-time dynamic network flow algorithms , 1998, Oper. Res. Lett..

[16]  Wallace J. Hopp,et al.  Stationary dual prices and depreciation , 1988, Math. Program..

[17]  Martin Skutella,et al.  Quickest Flows Over Time , 2007, SIAM J. Comput..

[18]  Robert L. Smith,et al.  Characterizing extreme points as basic feasible solutions in infinite linear programs , 2009, Oper. Res. Lett..

[19]  Robert L. Smith,et al.  Conditions for the Existence of Planning Horizons , 1984, Math. Oper. Res..

[20]  J. C. Bean,et al.  Optimal Capacity Expansion Over an Infinite Horizon , 1985 .

[21]  M. Pullan Forms of Optimal Solutions for Separated Continuous Linear Programs , 1995 .

[22]  E. Anderson A new continuous model for job-shop scheduling , 1981 .

[23]  Robert L. Smith,et al.  Shadow Prices in Infinite-Dimensional Linear Programming , 1998, Math. Oper. Res..

[24]  M. Pullan A Duality Theory for Separated Continuous Linear Programs , 1996 .

[25]  Robert L. Smith,et al.  Approximating Extreme Points of Infinite Dimensional Convex Sets , 1998, Math. Oper. Res..

[26]  Gideon Weiss,et al.  A simplex based algorithm to solve separated continuous linear programs , 2008, Math. Program..

[27]  R. Grinold Infinite Horizon Programs , 1971 .

[28]  Andrew B. Philpott,et al.  Continuous-Time Flows in Networks , 1990, Math. Oper. Res..

[29]  Lisa Fleischer,et al.  Efficient Algorithms for Separated Continuous Linear Programs: The Multicommodity Flow Problem with Holding Costs and Extensions , 2005, Math. Oper. Res..

[30]  C. Bes,et al.  Concepts of Forecast and Decision Horizons: Applications to Dynamic Stochastic Optimization Problems , 1986, Math. Oper. Res..

[31]  Robert L. Smith,et al.  Infinite Horizon Optimization , 1989, Math. Oper. Res..

[32]  M. Pullan An algorithm for a class of continuous linear programs , 1993 .

[33]  Marco A. López,et al.  Linear semi-infinite programming theory: An updated survey , 2002, Eur. J. Oper. Res..

[34]  Irwin E. Schochetman,et al.  Convergence of best approximations from unbounded sets , 1992 .

[35]  A. Federgruen,et al.  Fast Solution and Detection of Minimal Forecast Horizons in Dynamic Programs with a Single Indicator of the Future: Applications to Dynamic Lot-Sizing Models , 1995 .

[36]  A. Federgruen,et al.  The dynamic lot-sizing model with backlogging: A simple o(n log n) algorithm and minimal forecast horizon procedure , 1993 .

[37]  Malcolm Craig Pullan,et al.  An extended algorithm for separated continuous linear programs , 2002, Math. Program..

[38]  André F. Perold Extreme Points and Basic Feasible Solutions in Continuous Time Linear Programming , 1981 .

[39]  P. Nash,et al.  A Class of Continuous Network Flow Problems , 1982, Math. Oper. Res..

[40]  Richard Grinold Convex infinite horizon programs , 1983, Math. Program..

[41]  Awi Federgruen,et al.  Minimal Forecast Horizons and a New Planning Procedure for the General Dynamic Lot Sizing Model: Nervousness Revisited , 1994, Oper. Res..

[42]  Sarah M. Ryan,et al.  Degeneracy in infinite horizon optimization , 1989, Math. Program..

[43]  Nina M. Roy,et al.  Extreme points of convex sets in infinite dimensional spaces , 1987 .

[44]  Andy Philpott,et al.  An adaptive discretization algorithm for a class of continuous network programs , 1995, Networks.

[45]  D. Hopkins Infinite-Horizon Optimality in an Equipment Replacement and Capacity Expansion Model , 1971 .