Wavelet bases of Hermite cubic splines on the interval
暂无分享,去创建一个
[1] C. Chui,et al. Wavelets on a Bounded Interval , 1992 .
[2] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[3] Charles A. Micchelli,et al. Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.
[4] I. Daubechies,et al. Wavelets on the Interval and Fast Wavelet Transforms , 1993 .
[5] C. Chui,et al. On compactly supported spline wavelets and a duality principle , 1992 .
[6] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[7] P. G. Ciarlet,et al. Introduction to Numerical Linear Algebra and Optimisation , 1989 .
[8] Jinchao Xu,et al. Galerkin-wavelet methods for two-point boundary value problems , 1992 .
[9] George C. Donovan,et al. Construction of Orthogonal Wavelets Using Fractal Interpolation Functions , 1996 .
[10] W. Dahmen,et al. Biorthogonal Multiwavelets on the Interval: Cubic Hermite Splines , 2000 .
[11] G. Strang,et al. Approximation by translates of refinable functions , 1996 .
[12] Jianzhong Wang,et al. CUBIC SPLINE WAVELET BASES OF SOBOLEV SPACES AND MULTILEVEL INTERPOLATION , 1996 .
[13] Yuesheng Xu,et al. Discrete Wavelet Petrov–Galerkin Methods , 2002, Adv. Comput. Math..
[14] J. Pasciak,et al. Parallel multilevel preconditioners , 1990 .