Control of the cylinder wake in the laminar regime by Trust-Region methods and POD Reduced Order Models

In this paper we investigate the optimal control approach for the active control of the circular cylinder wake flow considered in the laminar regime (Re = 200). The objective is the mean drag minimization of the wake where the control function is the time harmonic angular velocity of the rotating cylinder. When the Navier-Stokes equations are used as state equation, the discretization of the optimality system leads to large scale discretized optimization problems that represent a tremendous computational task. In order to reduce the number of state variables during the optimization process, a Proper Orthogonal Decomposition (POD) Reduced Order Model (ROM) is then derived to be used as state equation. Since the range of validity of the POD ROM is generally limited to the vicinity of the design parameters in the control parameter space, we propose to use the Trust-Region Proper Orthogonal Decomposition (TRPOD) approach, originally introduced by Fahl (2000), to update the reduced order models during the optimization process. Benefiting from the trust-region philosophy, rigorous convergence results guarantee that the iterates produced by the TRPOD algorithm will converge to the solution of the original optimization problem defined with a high a fidelity model. A lot of computational work is indeed saved because the optimization process is now based only on low-fidelity models. When the TRPOD is applied to the wake flow configuration, this approach leads to a relative mean drag reduction of 30% for reduced numerical costs.

[1]  Haecheon Choi,et al.  Characteristics of flow over a rotationally oscillating cylinder at low Reynolds number , 2002 .

[2]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[3]  George Em Karniadakis,et al.  A low-dimensional model for simulating three-dimensional cylinder flow , 2002, Journal of Fluid Mechanics.

[4]  J. Wesfreid,et al.  On the relation between the global modes and the spectra of drag and lift in periodic wake flows , 2003 .

[5]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[6]  M. Braza,et al.  A nonreflecting outlet boundary condition for incompressible unsteady Navier-Stokes calculations , 1993 .

[7]  On the power required to control the circular cylinder wake by rotary oscillations , 2006 .

[8]  S. S. Ravindran,et al.  Adaptive Reduced-Order Controllers for a Thermal Flow System Using Proper Orthogonal Decomposition , 2001, SIAM J. Sci. Comput..

[9]  Michel L. Riethmuller,et al.  Post-processing of experimental and numerical data , 2002 .

[10]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[11]  Y. Chew,et al.  NUMERICAL INVESTIGATION OF A ROTATIONALLY OSCILLATING CYLINDER IN MEAN FLOW , 2001 .

[12]  Cosku Kasnakoglu,et al.  Reduced order modeling, nonlinear analysis and control methods for flow control problems , 2007 .

[13]  R. Henderson Nonlinear dynamics and pattern formation in turbulent wake transition , 1997, Journal of Fluid Mechanics.

[14]  Max D. Gunzburger,et al.  Centroidal Voronoi Tessellation-Based Reduced-Order Modeling of Complex Systems , 2006, SIAM J. Sci. Comput..

[15]  Linda R. Petzold,et al.  Error Estimation for Reduced Order Models of Dynamical systems , 2003 .

[16]  Charles-Henri Bruneau,et al.  Low-order modelling of laminar flow regimes past a confined square cylinder , 2004, Journal of Fluid Mechanics.

[17]  R. Temam,et al.  On some control problems in fluid mechanics , 1990 .

[18]  Bernd R. Noack,et al.  A global stability analysis of the steady and periodic cylinder wake , 1994, Journal of Fluid Mechanics.

[19]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[20]  L. Cordier,et al.  On the generation of a reverse von Kármán street for the controlled cylinder wake in the laminar regime , 2006 .

[21]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[22]  Gilead Tadmor,et al.  Low-Dimensional Models For Feedback Flow Control. Part I: Empirical Galerkin models , 2004 .

[23]  Bartosz Protas,et al.  Optimal rotary control of the cylinder wake in the laminar regime , 2002 .

[24]  Hermann F. Fasel,et al.  Dynamics of three-dimensional coherent structures in a flat-plate boundary layer , 1994, Journal of Fluid Mechanics.

[25]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[26]  J. Wesfreid,et al.  Drag force in the open-loop control of the cylinder wake in the laminar regime , 2002 .

[27]  J. Peraire,et al.  OPTIMAL CONTROL OF VORTEX SHEDDING USING LOW-ORDER MODELS. PART II-MODEL-BASED CONTROL , 1999 .

[28]  Jacques Periaux,et al.  Active Control and Drag Optimization for Flow Past a Circular Cylinder , 2000 .

[29]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[30]  Laurent Cordier,et al.  Optimal rotary control of the cylinder wake using POD reduced order model , 2004 .

[31]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems (Advances in Design and Control) (Advances in Design and Control) , 2005 .

[32]  Roger Temam,et al.  DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms , 2001, Journal of Fluid Mechanics.

[33]  J. Freund,et al.  A noise-controlled free shear flow , 2005, Journal of Fluid Mechanics.

[34]  Max Gunzburger,et al.  Adjoint Equation-Based Methods for Control Problems in Incompressible, Viscous Flows , 2000 .

[35]  Karen Willcox,et al.  Reduced-order aerodynamic models for aeroelastic control of turbomachines , 1999 .

[36]  Accurate POD Reduced-Order Models of separated flows , 2007 .

[37]  George E. Karniadakis,et al.  Gappy data: To Krig or not to Krig? , 2006, J. Comput. Phys..

[38]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[39]  Wr Graham,et al.  OPTIMAL CONTROL OF VORTEX SHEDDING USING LOW-ORDER MODELS. PART I-OPEN-LOOP MODEL DEVELOPMENT , 1999 .

[40]  P. Sagaut,et al.  Calibrated reduced-order POD-Galerkin system for fluid flow modelling , 2005 .

[41]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[42]  E. Sachs,et al.  Trust-region proper orthogonal decomposition for flow control , 2000 .

[43]  D. Rempfer,et al.  Investigations of boundary layer transition via Galerkin projections on empirical eigenfunctions , 1996 .

[44]  Thomas Bewley,et al.  Flow control: new challenges for a new Renaissance , 2001 .

[45]  M. Braza,et al.  Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder , 1986, Journal of Fluid Mechanics.

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  Y. Chang Approximate models for optimal control of turbulent channel flow , 2000 .

[48]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[49]  Charles-Henri Bruneau,et al.  Accurate model reduction of transient and forced wakes , 2007 .

[50]  K. Willcox Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition , 2004 .

[51]  M. Heckl,et al.  Propagation and Reflection of Sound in Rarefied Gases. I. Theoretical , 1965 .

[52]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[53]  P. Dimotakis,et al.  Rotary oscillation control of a cylinder wake , 1989, Journal of Fluid Mechanics.

[54]  M. Chou Synchronization of vortex shedding from a cylinder under rotary oscillation , 1997 .

[55]  G. Karniadakis,et al.  A spectral viscosity method for correcting the long-term behavior of POD models , 2004 .

[56]  M. D. Gunzburger Introduction into mathematical aspects of flow control and optimization , 1997 .

[57]  S. Ravindran,et al.  A Reduced-Order Method for Simulation and Control of Fluid Flows , 1998 .

[58]  George Em Karniadakis,et al.  A Spectral Vanishing Viscosity Method for Large-Eddy Simulations , 2000 .

[59]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[60]  Ionel M. Navon,et al.  Suppression of vortex shedding for flow around a circular cylinder using optimal control , 2002 .

[61]  H. Sung,et al.  Quasi-periodicity in the wake of a rotationally oscillating cylinder , 2000, Journal of Fluid Mechanics.

[62]  Stephen J. Wright,et al.  Springer Series in Operations Research , 1999 .

[63]  H. Sung,et al.  Numerical simulation of the flow behind a rotary oscillating circular cylinder , 1998 .

[64]  P. Toint Global Convergence of a a of Trust-Region Methods for Nonconvex Minimization in Hilbert Space , 1988 .

[65]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[66]  Kosuke Nagaya,et al.  Vortex Shedding Resonance from a Rotationally Oscillating Cylinder , 1998 .

[67]  H. M. Badr,et al.  Flow Structure in the Wake of a Rotationally Oscillating Cylinder , 2000 .

[68]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[69]  S. S. Ravindran,et al.  Reduced-Order Adaptive Controllers for Fluid Flows Using POD , 2000, J. Sci. Comput..

[70]  R. Henderson,et al.  Three-dimensional Floquet stability analysis of the wake of a circular cylinder , 1996, Journal of Fluid Mechanics.

[71]  J. Wesfreid,et al.  The wake of a cylinder performing rotary oscillations , 2006, Journal of Fluid Mechanics.

[72]  Zhaojun Bai,et al.  Reduced-Order Modeling , 2005 .

[73]  Xi-Yun Lu,et al.  A NUMERICAL STUDY OF FLOW PAST A ROTATIONALLY OSCILLATING CIRCULAR CYLINDER , 1996 .

[74]  L. Cordier,et al.  Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model , 2005 .

[75]  M. Bergmann Optimisation aérodynamique par réduction de modèle POD et contrôle optimal : application au sillage laminaire d'un cylindre circulaire , 2004 .

[76]  Nobuyuki Fujisawa,et al.  Feedback Control of Vortex Shedding from a Circular Cylinder by Rotational Oscillations , 2001 .

[77]  Guirong Liu,et al.  Numerical simulation of flow past a rotationally oscillating cylinder , 2001 .

[78]  K. Afanasiev,et al.  Adaptive Control Of A Wake Flow Using Proper Orthogonal Decomposition1 , 2001 .