A bounded arithmetic theory for constant depth threshold circuits

We de ne an extension R 0 2 of the bounded arithmetic theory R 0 2 and show that the class of functions b 1 -de nable in R 0 2 coincides with the computational complexity class TC 0 of functions computable by polynomial size, constant depth threshold circuits.

[1]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[2]  N. Immerman,et al.  On uniformity within NC 1 . , 1988 .

[3]  Neil Immerman,et al.  On Uniformity within NC¹ , 1990, J. Comput. Syst. Sci..

[4]  Bill Allen,et al.  Arithmetizing Uniform NC , 1991, Ann. Pure Appl. Log..

[5]  Peter Clote,et al.  Bounded Arithmetic for NC, ALogTIME, L and NL , 1992, Ann. Pure Appl. Log..

[6]  Jan Johannsen A note on sharply bounded arithmetic , 1994, Arch. Math. Log..

[7]  P. Clote,et al.  First Order Bounded Arithmetic and Small Boolean Circuit Complexity Classes , 1995 .

[8]  外史 竹内 Bounded Arithmetic と計算量の根本問題 , 1996 .