Uncertainty in cooperative interval games: how Hurwicz criterion compatibility leads to egalitarianism

We study cooperative interval games. These are cooperative games where the value of a coalition is given by a closed real interval specifying a lower bound and an upper bound of the possible outcome. For interval cooperative games, several (interval) solution concepts have been introduced in the literature. We assume that each player has a different attitude towards uncertainty by means of the so-called Hurwicz coefficients. These coefficients specify the degree of optimism that each player has, so that an interval becomes a specific payoff. We show that a classical cooperative game arises when applying the Hurwicz criterion to each interval game. On the other hand, the same Hurwicz criterion can be also applied to any interval solution of the interval cooperative game. Given this, we say that a solution concept is Hurwicz compatible if the two procedures provide the same final payoff allocation. When such compatibility is possible, we characterize the class of compatible solutions, which reduces to the egalitarian solution when symmetry is required. The Shapley value and the core solution cases are also discussed.

[1]  Manuel Iori,et al.  Exact and heuristic algorithms for the interval min-max regret generalized assignment problem , 2018, Comput. Ind. Eng..

[2]  Tim J. Boonen,et al.  Constrained stochastic cost allocation , 2019, Math. Soc. Sci..

[3]  Gary E. Bolton,et al.  ERC: A Theory of Equity, Reciprocity, and Competition , 2000 .

[4]  Gustavo Bergantiños,et al.  Additive rules in bankruptcy problems and other related problems , 2004, Math. Soc. Sci..

[5]  Yukihiko Funaki,et al.  The balanced contributions property for equal contributors , 2017, Games Econ. Behav..

[6]  Vito Fragnelli,et al.  Sequencing interval situations and related games , 2013, Central Eur. J. Oper. Res..

[7]  R. Branzei,et al.  Cores and Stable Sets for Interval-Valued Games , 2008 .

[8]  André Casajus,et al.  Weakly monotonic solutions for cooperative games , 2014, J. Econ. Theory.

[9]  Rodica Branzei,et al.  The interval Shapley value: an axiomatization , 2010, Central Eur. J. Oper. Res..

[10]  P. Solal,et al.  Coalitional desirability and the equal division value , 2017, Theory and Decision.

[11]  Tim J. Boonen,et al.  Constrained Stochastic Cost Allocation , 2019, Math. Soc. Sci..

[12]  Rodica Branzei,et al.  Cooperative interval games: a survey , 2010, Central Eur. J. Oper. Res..

[13]  André Casajus,et al.  On a class of solidarity values , 2014, Eur. J. Oper. Res..

[14]  Takaaki Abe,et al.  The weighted-egalitarian Shapley values , 2019, Soc. Choice Welf..

[15]  H. Moulin,et al.  Sharing the cost of risky projects , 2018 .

[16]  Gustavo Bergantiños,et al.  A Value for PERT Problems , 2009, IGTR.

[17]  R. Branzei,et al.  Bankruptcy problems with interval uncertainty , 2008 .

[18]  André Casajus,et al.  Null players, solidarity, and the egalitarian Shapley values , 2013 .

[19]  S. Alparslan-Gok,et al.  Interval Solutions for TU-Games , 2017 .

[20]  Yukihiko Funaki,et al.  Consistency, population solidarity, and egalitarian solutions for TU-games , 2012 .

[21]  Rodica Branzei,et al.  Airport interval games and their Shapley value , 2009 .

[22]  René van den Brink,et al.  Null or nullifying players: The difference between the Shapley value and equal division solutions , 2007, J. Econ. Theory.

[23]  L. Shapley A Value for n-person Games , 1988 .

[24]  Debraj Ray,et al.  A Concept of Egalitarianism under Participation Constraints , 1989 .

[25]  Stef Tijs,et al.  Connection situations under uncertainty and cost monotonic solutions , 2011, Comput. Oper. Res..

[26]  Silvia Miquel,et al.  Cooperation under interval uncertainty , 2008, Math. Methods Oper. Res..

[27]  Sylvain Béal,et al.  Characterizations of weighted and equal division values , 2016 .

[28]  Rodica Branzei,et al.  Convex Interval Games , 2009, Adv. Decis. Sci..

[29]  Hao Sun,et al.  A new approach of cooperative interval games: The interval core and Shapley value revisited , 2012, Oper. Res. Lett..

[30]  Debraj Ray,et al.  A CONCEPT OF EGALITARIANISM UNDER PARTICIPATION , 1989 .

[31]  Roberto Montemanni,et al.  A Benders decomposition approach for the robust spanning tree problem with interval data , 2006, Eur. J. Oper. Res..

[32]  Aymeric Lardon Endogenous interval games in oligopolies and the cores , 2017, Ann. Oper. Res..

[33]  Igor Averbakh,et al.  Exact and heuristic algorithms for the interval data robust assignment problem , 2011, Comput. Oper. Res..

[34]  Jingyi Xue,et al.  Fair division with uncertain needs , 2018, Soc. Choice Welf..

[35]  R. Branzei,et al.  Shapley-like values for interval bankruptcy games , 2003 .

[36]  W. Lucas,et al.  N‐person games in partition function form , 1963 .