Quantum teleportation scheme by selecting one of multiple output ports

The scheme of quantum teleportation, where Bob has multiple $(N)$ output ports and obtains the teleported state by simply selecting one of the $N$ ports, is thoroughly studied. We consider both the deterministic version and probabilistic version of the teleportation scheme aiming to teleport an unknown state of a qubit. Moreover, we consider two cases for each version: (i) the state employed for the teleportation is fixed to a maximally entangled state and (ii) the state is also optimized as well as Alice's measurement. We analytically determine the optimal protocols for all the four cases and show the corresponding optimal fidelity or optimal success probability. All these protocols can achieve the perfect teleportation in the asymptotic limit of $N\ensuremath{\rightarrow}\ensuremath{\infty}$. The entanglement properties of the teleportation scheme are also discussed.

[1]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[2]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[3]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[4]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[5]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[6]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[7]  M. Izutsu,et al.  Quantum channels showing superadditivity in classical capacity , 1998, quant-ph/9801012.

[8]  Vladimir Buzek,et al.  Probabilistic programmable quantum processors with multiple copies of program states , 2005 .

[9]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[10]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[11]  Stefano Mancini,et al.  Conditioning two-party quantum teleportation within a three-party quantum channel , 2005 .

[12]  David Perez-Garcia Optimality of programmable quantum measurements , 2006 .

[13]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[14]  Satoshi Ishizaka,et al.  Asymptotic teleportation scheme as a universal programmable quantum processor. , 2008, Physical review letters.

[15]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[16]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[17]  M. Dušek,et al.  Universal measurement apparatus controlled by quantum software. , 2002, Physical review letters.

[18]  William K. Wootters,et al.  A ‘Pretty Good’ Measurement for Distinguishing Quantum States , 1994 .

[19]  I. Chuang,et al.  Programmable Quantum Gate Arrays , 1997, quant-ph/9703032.

[20]  Andrzej Grudka,et al.  Nonmaximally entangled states can be better for multiple linear optical teleportation. , 2008, Physical review letters.

[21]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[22]  Jaehyun Kim,et al.  Storing unitary operators in quantum states , 2001 .

[23]  J D Franson,et al.  High-fidelity quantum logic operations using linear optical elements. , 2002, Physical review letters.

[24]  Yonina C. Eldar,et al.  Optimal detection of symmetric mixed quantum states , 2004, IEEE Transactions on Information Theory.

[25]  H. Kimble,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[26]  G. D’Ariano,et al.  Efficient universal programmable quantum measurements. , 2004, Physical review letters.

[27]  Osamu Hirota,et al.  Square-root measurement for quantum symmetric mixed state signal , 2003, IEEE Trans. Inf. Theory.

[28]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[29]  M. Dušek,et al.  Probabilistic quantum multimeters , 2003, quant-ph/0308111.

[30]  Samuel L. Braunstein,et al.  A posteriori teleportation , 1998, Nature.

[31]  Masashi Ban,et al.  Optimum measurements for discrimination among symmetric quantum states and parameter estimation , 1997 .

[32]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[33]  Stefano Mancini,et al.  Continuous-variable entanglement and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure , 2003 .

[34]  V. Buzek,et al.  Approximate programmable quantum processors , 2005, quant-ph/0510161.

[35]  Braunstein,et al.  Multipartite entanglement for continuous variables: A quantum teleportation network , 1999, Physical review letters.

[36]  Christoph Simon,et al.  Probabilistic instantaneous quantum computation , 2003 .

[37]  J. Cirac,et al.  Storing quantum dynamics in quantum states: a stochastic programmable gate. , 2001, Physical review letters.

[38]  Stefano Pirandola,et al.  Quantum teleportation with continuous variables: A survey , 2006 .