Centromeric Nucleosomes Induce Positive DNA Supercoils

[1]  I. Cheeseman,et al.  Toward a molecular structure of the eukaryotic kinetochore. , 2008, Developmental cell.

[2]  S. Henikoff,et al.  Structure, dynamics, and evolution of centromeric nucleosomes , 2007, Proceedings of the National Academy of Sciences.

[3]  S. Biggins,et al.  Centromere identity is specified by a single centromeric nucleosome in budding yeast , 2007, Proceedings of the National Academy of Sciences.

[4]  S. Henikoff,et al.  Tetrameric Structure of Centromeric Nucleosomes in Interphase Drosophila Cells , 2007, PLoS biology.

[5]  B. E. Black,et al.  CENP-A-containing nucleosomes: easier disassembly versus exclusive centromeric localization. , 2007, Journal of molecular biology.

[6]  Richard E. Baker,et al.  Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization , 2007, Proceedings of the National Academy of Sciences.

[7]  G. Mizuguchi,et al.  Nonhistone Scm3 and Histones CenH3-H4 Assemble the Core of Centromere-Specific Nucleosomes , 2007, Cell.

[8]  N. Cozzarelli,et al.  DNA overwinds when stretched , 2006, Nature.

[9]  John R. Yates,et al.  The human CENP-A centromeric nucleosome-associated complex , 2006, Nature Cell Biology.

[10]  S. Henikoff,et al.  Chaperone-mediated assembly of centromeric chromatin in vitro. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Mozziconacci,et al.  Structural plasticity of single chromatin fibers revealed by torsional manipulation , 2006, Nature Structural &Molecular Biology.

[12]  S. Henikoff,et al.  Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  G. Karpen,et al.  Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. , 2006, Developmental cell.

[14]  N. Cozzarelli,et al.  The Saccharomyces cerevisiae Smc2/4 Condensin Compacts DNA into (+) Chiral Structures without Net Supercoiling* , 2005, Journal of Biological Chemistry.

[15]  Benjamin S. Freedman,et al.  Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts , 2005, The Journal of cell biology.

[16]  S. Diekmann,et al.  Functional Complementation of Human Centromere Protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae , 2004, Molecular and Cellular Biology.

[17]  J. Tytell,et al.  Structure, function, and regulation of budding yeast kinetochores. , 2003, Annual review of cell and developmental biology.

[18]  Steven Henikoff,et al.  Phylogenomics of the nucleosome , 2003, Nature Structural Biology.

[19]  E. Salmon,et al.  Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics. , 2003, Molecular biology of the cell.

[20]  T. Tomonaga,et al.  Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. , 2003, Cancer research.

[21]  J. Reeve,et al.  Archaeal Histone Tetramerization Determines DNA Affinity and the Direction of DNA Supercoiling* , 2002, The Journal of Biological Chemistry.

[22]  E. Winzeler,et al.  Genomic and Genetic Definition of a Functional Human Centromere , 2001, Science.

[23]  K. Sullivan,et al.  Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. , 2001, Journal of cell science.

[24]  G. Karpen,et al.  The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions , 2001, Nature Cell Biology.

[25]  J. Kilmartin,et al.  The Ndc80p Complex from Saccharomyces cerevisiae Contains Conserved Centromere Components and Has a Function in Chromosome Segregation , 2001, The Journal of cell biology.

[26]  M. Yanagida,et al.  Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. , 2000, Science.

[27]  S. Henikoff,et al.  Heterochromatic deposition of centromeric histone H3-like proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  P. Forterre,et al.  Negative constrained DNA supercoiling in archaeal nucleosomes , 2000, Molecular microbiology.

[29]  S. Henikoff,et al.  Cell division: A histone-H3-like protein in C. elegans , 1999, Nature.

[30]  B. Révet,et al.  Nucleosome dynamics. Protein and DNA contributions in the chiral transition of the tetrasome, the histone (H3-H4)2 tetramer-DNA particle. , 1999, Journal of molecular biology.

[31]  O. Stemmann,et al.  A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. , 1999, Genes & development.

[32]  J. N. Reeve,et al.  Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome , 1998, Cellular and Molecular Life Sciences CMLS.

[33]  D. Koshland,et al.  Cse4p Is a Component of the Core Centromere of Saccharomyces cerevisiae , 1998, Cell.

[34]  A. Prunell A topological approach to nucleosome structure and dynamics: the linking number paradox and other issues. , 1998, Biophysical journal.

[35]  J. Reeve,et al.  Archaeal nucleosomes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[36]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[37]  K. Kimura,et al.  ATP-Dependent Positive Supercoiling of DNA by 13S Condensin: A Biochemical Implication for Chromosome Condensation , 1997, Cell.

[38]  B. Révet,et al.  Interaction of the histone (H3-H4)2 tetramer of the nucleosome with positively supercoiled DNA minicircles: Potential flipping of the protein from a left- to a right-handed superhelical form. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  O. Niwa,et al.  A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. , 1992, Molecular biology of the cell.

[40]  K. V. van Holde,et al.  What happens to nucleosomes during transcription? , 1992, The Journal of biological chemistry.

[41]  J. Reeve,et al.  DNA binding by the archaeal histone HMf results in positive supercoiling. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Hegemann,et al.  In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation , 1991, Molecular and cellular biology.

[43]  R. Margolis,et al.  Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[44]  L. Clarke,et al.  The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function , 1991, The Journal of cell biology.

[45]  K. Bloom,et al.  Heterogeneity and maintenance of centromere plasmid copy number inSaccharomyces cerevisiae , 1990, Chromosoma.

[46]  K. Bloom,et al.  Genetic manipulation of centromere function , 1987, Molecular and cellular biology.

[47]  L. Hartwell,et al.  A genetic analysis of dicentric minichromosomes in saccharomyces cerevisiae , 1987, Cell.

[48]  J. Huberman,et al.  Both DNA topoisomerases I and II relax 2 μm plasmid DNA in living yeast cells , 1986, Cell.

[49]  L. Bergman,et al.  Nuclease digestion of circular TRP1ARS1 chromatin reveals positioned nucleosomes separated by nuclease-sensitive regions. , 1984, Journal of molecular biology.

[50]  K. Bloom,et al.  Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes , 1982, Cell.

[51]  John Carbon,et al.  Isolation of a yeast centromere and construction of functional small circular chromosomes , 1980, Nature.

[52]  W. L. Fangman,et al.  Nucleosome organization of the yeast 2-micrometer DNA plasmid: a eukaryotic minichromosome. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[53]  T. Owen-Hughes,et al.  Nucleosome dynamics. , 2006, Biochemical Society symposium.

[54]  J. Huberman,et al.  Both DNA topoisomerases I and II relax 2 micron plasmid DNA in living yeast cells. , 1986, Cell.

[55]  G. Borisy,et al.  Molecular biology of the cytoskeleton , 1984 .

[56]  G. Snounou,et al.  Netropsin increases the linking number of DNA. , 1983, Cold Spring Harbor symposia on quantitative biology.