Set-valued observer design for a class of uncertain linear systems with persistent disturbance

In this paper, a class of linear systems affected by both parameter variations and additive disturbances is considered. The problem of designing a set-valued state observer, which estimates a region containing the real state for each time interval, is investigated. The techniques for designing the observer are based on the positive invariant set theory. By constructing a set-induced Lyapunov function, it is shown that the estimation error exponentially converges to a given compact set with an assigned rate of convergence.

[1]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[2]  S. Bhattacharyya The structure of robust observers , 1976 .

[3]  A. Polański On infinity norms as Lyapunov functions for linear systems , 1995, IEEE Trans. Autom. Control..

[4]  V. Vittal,et al.  Computer generated Lyapunov functions for interconnected systems: Improved results with applications to power systems , 1983, The 22nd IEEE Conference on Decision and Control.

[5]  F. Blanchini Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions , 1994, IEEE Trans. Autom. Control..

[6]  Panos J. Antsaklis,et al.  Set-valued observer design for a class of uncertain linear systems with persistent disturbance and measurement noise , 2003 .

[7]  Pramod P. Khargonekar,et al.  FILTERING AND SMOOTHING IN AN H" SETTING , 1991 .

[8]  D. Bernstein,et al.  Parameter-dependent Lyapunov functions and the Popov criterion in robust analysis and synthesis , 1995, IEEE Trans. Autom. Control..

[9]  Franco Blanchini Feedback control for linear time-invariant systems with state and control bounds in the presence of disturbances , 1990 .

[10]  Jeff S. Shamma,et al.  Set-valued observers and optimal disturbance rejection , 1999, IEEE Trans. Autom. Control..

[11]  D. Luenberger Observers for multivariable systems , 1966 .

[12]  Maria Elena Valcher State observers for discrete-time linear systems with unknown inputs , 1999, IEEE Trans. Autom. Control..

[13]  Tinglun Song,et al.  Robust l/sub 1/ estimation using the Popov-Tsypkin multiplier with application to robust fault detection , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[14]  Emmanuel G. Collins,et al.  Robust l1 estimation using the Popov-Tsypkin multiplier with application to robust fault detection , 2001 .

[15]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[16]  P. Khargonekar,et al.  Filtering and smoothing in an H/sup infinity / setting , 1991 .

[17]  George Bitsoris,et al.  Constrained regulation of linear systems , 1995, Autom..

[18]  P. Cuguero,et al.  A class of uncertain linear interval models for which a set based robust simulation can be reduced to few pointwise simulations , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[19]  E. Akpan,et al.  Robust observer for uncertain linear systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[20]  E. Walter,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .

[21]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..